首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用双极型管电流增益的温度特性,采用UMC0.6μm BiCMOS工艺设计了一款指数型温度补偿BiCMOS带隙基准电压源。测试结果表明:温度在10°C~100°C之间变化,带隙基准电压随温度变化最大偏移为2.5mV;电源电压在2.5~5.0V之间变化,带隙基准电压随电源电压直流变化最大偏移为0.95mV。该带隙基准电压具有较高的温度稳定性和电压稳定性。  相似文献   

2.
利用反向带隙电压原理,采用基于CMOS阈值电压的自偏置共源共栅电流镜技术,设计了一种低压低噪声基准电压源.该电压基准源没有外加滤波电容的情况下,通过双极型晶体管大的输出阻抗特性,实现了更低的噪声输出,提高了输出电压的精度.Hspice仿真结果表明,在0.95V电源电压下,输出基准电压为233.9 mV,温度系数为7.6...  相似文献   

3.
In this paper a low-voltage low-power threshold voltage monitor for CMOS process sensing is presented. This circuit works in weak inversion and it can be used as an elementary circuit block for on-chip compensation of the intra-die or inter-die threshold voltage variations in low-power analog and mixed-signal SoC, since it is robust to temperature and power supply voltage variations (similar to the bandgap voltage reference). The proposed threshold voltage monitor has been successfully verified in a standard 0.35-μm n-well CMOS TSMC process. Experimental results have confirmed that the circuit generates an average reference voltage of 758 mV (very close to the typical threshold voltage when extrapolated to absolute zero) for a 950 mV power supply voltage, with a variation of 39 ppm/°C for the −20 to 80°C temperature range.  相似文献   

4.
A new CMOS voltage reference circuit consisting of two pairs of transistors is presented. One pair exhibits a threshold voltage difference with a negative temperature coefficient (-0.49 mV//spl deg/C), while the other exhibits a positive temperature coefficient (+0.17 mV//spl deg/C). The circuit was robust to process variations and exhibited excellent temperature independence and stable output voltage. Aside from conductivity type and impurity concentrations of gate electrodes, transistors in the pairs were identical, meaning that the system was robust with respect to process fluctuations. Measurements of the voltage reference circuit without trimming adjustments revealed that it had excellent output voltage reproducibility of within /spl plusmn/2%, low temperature coefficient of less than 80 ppm//spl deg/C, and low current consumption of 0.6 /spl mu/A.  相似文献   

5.
利用工作于亚阈值的NMOS器件,产生两个负温度系数的电压源,然后将两个电压源作差,产生稳定的基准电压输出.整体电路采用HJTCl80 nrn标准CM()S工艺实现.仿真结果表明,基准源输出电压为220 mV,在一25℃到100℃的温度范围内的温度系数为68×10-6/ C.电路的最小供电电压可低至O.7 V,在供电电压O.7~4V范围内的线性调整率为1.5 mV/V.无滤波电容时,1 kHz的电源抑制比为-56 dB室温下,1.O V电压供电时,电路总体功耗为3.7μW.版图设计后的芯片核心面积为O.02 mm2.本文设计的电压源适用于低电压低功耗的条件.  相似文献   

6.
This paper presents the design and experimental performance of a second-order bandgap voltage reference integrated circuit (IC). Experimentally observed nominal reference voltage at room temperature is 1.150 V with best temperature performance of 3 mV variation over −40 to 120 °C. A 5-bit resistor trimming is used to compensate the variation of reference voltage due to layout mismatch and process variation. A trimming methodology is described in this paper to optimize both the temperature performance and reduce the variation of the room temperature voltage over different samples. Even with best temperature performance trim-code, the absolute variation in reference voltage over 20 samples is 85 mV which is trimmed to ±11 mV (1.3%) using the proposed trimming methodology. The second-order bandgap circuit is designed in a 0.5 μm BiCMOS process with less than 50 μA current consumption.  相似文献   

7.
A low power voltage reference generator operating with a supply voltage ranging from 1.6 to 3.6?V has been implemented in a 90-nm standard CMOS technology. The reference is based on MOSFETs that are biased in the weak inversion region to consume nanowatts of power and uses no resistors. The maximum supply current at 3.6?V and at 125°C is 173?nA. It provides a 771?mV voltage reference. A temperature coefficient of 7.5?ppm/°C is achieved at best and 39.5?ppm/°C on average, in a range from ?40 to 125°C, as the combined effect of a suppression of the temperature dependence of mobility and the compensation of the threshold voltage temperature variation. Several process parameters affect the performance of the proposed voltage reference circuit, so a process adjustment aimed at correcting errors in the reference voltage caused by these variations is dealt with. The total block area is 0.03?mm2.  相似文献   

8.
提出了一种新型的低压带隙基准源,与传统的带隙基准不同,该电路引入了第三个电流,以消除双极型晶体管射基电压的温度非线性项,从而实现曲率补偿。采用0.18μmCMOS工艺进行设计验证,HSpice仿真结果表明,室温下的输出电压为623mV,-55~+125℃范围内的温度系数为4.2ppm/℃,1.0~2.1V之间的电源调整率为0.9mV/V。  相似文献   

9.
A CMOS voltage reference circuit based on sub-threshold MOSFETs is proposed,which utilizes a temperature-dependent threshold voltage,a peaking current mirror and sub-threshold technology.The reference has been fabricated in an SMIC 0.13μm CMOS process with only MOS transistors and resistors.The experimental results show a reference voltage variation of 2 mV for a supply voltage ranging from 0.5 to 1.2 V and 0.8 mV for temperatures from -20 to 120℃.The proposed circuit generates a reference voltage of 140 mV and consumes a supply current of 0.8μA at room temperature.The occupied area is only 0.019 mm~2.  相似文献   

10.
A CMOS threshold voltage reference source for very-low-voltage applications   总被引:2,自引:0,他引:2  
This paper describes a CMOS voltage reference that makes use of weak inversion CMOS transistors and linear resistors, without the need for bipolar transistors. Its operation is analogous to the bandgap reference voltage, but the reference voltage is based on the threshold voltage of an nMOS transistor. The circuit implemented using 0.35 μm n-well CMOS TSMC process generates a reference of 741 mV under just 390 nW for a power supply of only 950 mV. The circuit presented a variation of 39 ppm/°C (after individual resistor trimming) for the −20 to +80 °C temperature range, and produced a line regulation of 25 mV/V for a power supply of up to 3 V.  相似文献   

11.
A curvature-corrected low-voltage bandgap reference   总被引:3,自引:0,他引:3  
A curvature-corrected bandgap reference that can function at supply voltages as low as 1 V, at a supply current of only 100 μA, is presented. After trimming, this bandgap reference has a temperature coefficient (TC) of ±4 p.p.m./°C. The reference voltage is about 200 mV and it can easily be adjusted to higher values. The temperature range of this circuit is from 0 to 125°C. This bandgap reference is realized using a standard bipolar process with base-diffused resistors  相似文献   

12.
利用CMOS工艺中Poly电阻和N-well电阻温度系数的不同,设计了一种输出可调的二阶曲率补偿带隙基准电压源.采用Chartered 0.35μm CMOS工艺模型,使用Cadence工具对电路进行了仿真,结果表明电路在电源电压为1.8V时可正常工作,当其在1.8~3V范围内变化时,基准电压变化仅有3.8mV;工作电压为2V时,输出基准电压在-40°C到80°C的温度范围内温度系数为1.6ppm/°C,工作电流为24μA,低频下的电源抑制比为-47dB.该带隙基准电压源的设计可以满足低温漂、高稳定性、低电源电压以及低功耗的要求.  相似文献   

13.
一种高精度带隙基准电压源设计   总被引:1,自引:1,他引:0  
提出一种采用0.35umCMOS工艺制作的带隙基准电压源电路,该电路具有高电源抑制比和低的温度系数。整体电路使用TSMC0.35umCMOS工艺,采用HSpice进行仿真。仿真结果表明,在-25~+125℃温度范围内温度系数为6.45ppm/C,电源抑制比达到-101dB,电源电压在2.5~4.5V之间,输出电压Vrel的摆动为0.1mV,功耗为0.815mW.是一种有效的基准电压实现方法。  相似文献   

14.
衬底驱动超低压CMOS带隙基准电压源   总被引:2,自引:2,他引:0  
采用二阶温度补偿和电流反馈技术,设计实现了一种基于衬底驱动技术和电阻分压技术的超低压CMOS带隙基准电压源。采用衬底驱动超低压运算放大器作为基准源的负反馈,使其输出用于产生自身的电流源偏置,其电源抑制比(PSRR)为-63.8dB。采用Hspice仿真,在0.9V电源电压下,输出基准电压为572.45mV,温度系数为13.3ppm/°C。在0.8~1.4V电源电压范围内,输出基准电压变化3.5mV。基于TSMC0.25μm2P5MCMOS工艺实现的衬底驱动带隙基准电压源的版图面积为203μm×478.1μm。  相似文献   

15.
A low-voltage temperature sensor designed for MEMS power harvesting systems is fabricated. The core of the sensor is a bandgap voltage reference circuit operating with a supply voltage in the range 1-1.5 V. The prototype was fabricated on a conventional 0.5 /spl mu/m silicon-on-sapphire (SOS) process. The sensor design consumes 15 /spl mu/A of current at 1 V. The internal reference voltage is 550 mV. The temperature sensor has a digital square wave output the frequency of which is proportional to temperature. A linear model of the dependency of output frequency with temperature has a conversion factor of 1.6 kHz//spl deg/C. The output is also independent of supply voltage in the range 1-1.5 V. Measured results and targeted applications for the proposed circuit are reported.  相似文献   

16.
This brief presents a simple reference circuit with channel-length modulation compensation to generate a reference voltage of 221 mV using subthreshold of MOSFETs at supply voltage of 0.85 V with power consumption of 3.3$mu$W at room temperature using TSMC 0.18-$mu$m technology. The proposed circuit occupied in less than 0.0238 mm$^2$achieves the reference voltage variation of 2 mV/V for supply voltage from 0.9 to 2.5V and about 6 mV of temperature variation in the range from$-hbox20^circ$C to 120$^circ$C. The agreement of simulation and measurement data is demonstrated.  相似文献   

17.
A sub-1 V, subthreshold current and voltage references are presented using Cascaded Current Mirrors (CCM) as temperature compensator and cascoded transistors as active load. The CCM uses current subtraction concept for temperature compensation of supply independent current generated from Current Generator Circuit (CGC) giving rise to reference current which is fed to active load circuit (ALC). The ALC consists of cascoded PTAT and CTAT voltages to generate supply and temperature independent output reference voltage. The proposed references are implemented and simulated in Cadence Virtuoso using 180 nm CMOS technology model for 0.95–1.8 V supply voltage range. The average output reference voltage of 609.7 mV is obtained with the line regulation of 1.99 mV/V. The supply current of 60.7 nA is found at 0.95 V supply along with Temperature Coefficient (TC) of 44.5 ppm/°C for a temperature range of −20 to 108 °C. A high-value PSRR of −42 dB at 100 Hz and −17 dB at 1 MHz is achieved. It has an area of 0.0082 mm2. The obtained average reference current is 6 nA having a slope of 5.5pA/°C.  相似文献   

18.
A low-voltage low-power voltage reference based on subthreshold MOSFETs   总被引:5,自引:0,他引:5  
In this work, a new low-voltage low-power CMOS voltage reference independent of temperature is presented. It is based on subthreshold MOSFETs and on compensating a PTAT-based variable with the gate-source voltage of a subthreshold MOSFET. The circuit, designed with a standard 1.2-/spl mu/m CMOS technology, exhibits an average voltage of about 295 mV with an average temperature coefficient of 119 ppm//spl deg/C in the range -25 to +125/spl deg/C. A brief study of gate-source voltage behavior with respect to temperature in subthreshold MOSFETs is also reported.  相似文献   

19.
CMOS带隙电压基准的误差及其改进   总被引:6,自引:0,他引:6  
分析了CMOS带隙基准电压值的误差,给出了定量的数学表达式和相应的改进方法。在此理论指导下,用0.25μmCMOS工艺设计了一个带隙基准源,并制出芯片。基准电压的设计值为1.2V,实测结果表明,在不使用修正技术的情况下,基准电压值的均方差达3mV,温度系数(从-40°C~100°C)为20ppm/°C,电源抑制比(从2~3.3V)80μV/V,验证了理论分析的正确性。  相似文献   

20.
实现了一种适用于SOC的低压高精度带隙基准电压源设计。利用斩波调制技术有效地减小了带隙基准源中运放的失调电压所引起的误差,从而提高了基准源的精度。考虑负载电流镜和差分输入对各2%的失配时,该基准源的输出电压波动峰峰值为0.31 mV。与传统带隙基准源相比,相对精度提高了86倍。在室温下,斩波频率为100 kH z时,基准源提供0.768 V的输出电压。当电源电压在0.8 V到1.6 V变化时,该基准源输出电压波动小于0.05 mV;当温度在0°C到80°C变化时,其温度系数小于12 ppm/°C。该基准源的最大功耗小于7.2μW,采用0.25μm 2P 5M CM O S工艺实现的版图面积为0.3 mm×0.4 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号