首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Creation of an autothermal system by coupling an endothermic to an exothermic reaction demands matching the thermal requirements of the two reactions. The application studied here is the operation of a solid oxide fuel cell (SOFC) with both direct (DIR) and indirect (IIR) internal reforming of methane. Such internal reforming within a high-temperature fuel cell module can lead to an overall autothermal operation which simplifies the system design and increases efficiency. However, such coupling is not easy to achieve because of the mismatch between the thermal load associated with the rate of steam reforming at typical SOFC temperatures and the local amount of heat available from the fuel cell reactions. Previous results have shown that the use of typical metal-based (e.g. Ni) IIR catalysts leads to full methane consumption but undesirable local cooling at the reformer entrance and the use of less active IIR catalysts (e.g. non-metals or diffusion limited nickel) leads to methane being carried-over into the SOFC anode (methane slippage). In order to evaluate performance in the latter case, a combined DIR and IIR SOFC steady-state model has been developed. Simulation results have shown that, lowering the IIR catalyst activity to prevent local cooling effects at the reformer entrance is not adequate, as the fast kinetics of the direct reforming reaction then lead to full methane conversion and steep temperature gradients in the first 10% of the fuel channel length. It is shown that the simultaneous reduction of the anode DIR reaction rate improves performance considerably. The system behaviour towards changes in current density, operating pressure, and flow configuration (counter-flow vs. co-flow) has been studied. Reduction of both DIR and IIR catalyst activity combined with a counter-flow operation leads to the best performance. System performance with an IIR oxide-based catalyst is also evaluated.  相似文献   

2.
The activation energy for the removal of surface carbon formed by methane decomposition following high-temperature reforming, from a nickel/zirconia solid oxide fuel cell (SOFC) anode has been calculated using two methods based on temperature-programmed oxidation. It is found that there is a fairly good agreement between the two methods. In addition, it was observed that the addition of small quantities of lithium to the anode resulted in a significant lowering of the activation energy for surface carbon removal by about 50 kJ mol-1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Steam reforming of hydrocarbons such as natural gas is an attractive method of producing the hydrogen fuel gas required by fuel cells. It may be carried out external to the fuel cell or internally. The two types of fuel cell in which internal reforming is most appropriate are the molten carbonate (MCFC), operating at ca. 650°C and the solid oxide (SOFC) which currently operates above 800°C. At such temperatures, the heat liberated by the electrochemical reactions within the cell can be utilised by the endothermic steam reforming reaction. This paper reviews some of the catalytic aspects of internal reforming in these two types of cell. In the MCFC the major catalyst issue is that of long term activity in the presence of a corrosive alkaline environment produced by the cell's electrolyte. In Europe, this is being addressed by British Gas and others, in a programme part-funded by the European Commission. In this programme, potential catalysts for the direct internal reforming MCFC were evaluated in ‘out-of-cell’ tests. This has led to the demonstration of a 1 kW proof-of-concept DIR-MCFC stack and the start of a European ‘Advanced DIR-MCFC’ project. For the SOFC, it has been shown that state-of-the-art nickel cermet anodes can provide sufficient activity for steam reforming without the need for additional catalyst. However, anode degradation may occur when steam reforming is carried out for long periods. New anode materials could therefore offer significant benefits.  相似文献   

4.
Creation of an autothermal system by coupling an endothermic to an exothermic reaction demands the matching of the thermal requirements of the two reactions. The application under study is a solid oxide fuel cell (SOFC) with indirect internal reforming (IIR) of methane, whereby the endothermic steam reforming reaction is thermally coupled to the exothermic oxidation reactions. A steady-state model of an IIR-SOFC has been developed to study the mismatch between the thermal load associated with the rate of steam reforming at typical SOFC temperatures and the local amount of heat available from the fuel cell reactions. Results have shown a local cooling effect, undesirable for ceramic fuel cells, close to the reformer entrance. The system behaviour towards changes in catalyst activity, fuel inlet temperature, current density, and operating pressure has been studied. Increasing the operating pressure is shown to be an effective way of reducing both the local cooling caused by the reforming reactions and the overall temperature increase across the cell. Simulations for both counter-flow and co-flow configurations have been performed and compared.  相似文献   

5.
SOFC内部重整反应与电化学反应耦合机理   总被引:1,自引:1,他引:0  
以经过预重整反应的混合气为原料的固体氧化物燃料电池(SOFC)内部,甲烷蒸气重整反应与电化学反应同时发生在阳极多孔介质中,二者受到不同的操作与设计参数的影响,对电池总体性能起着决定性作用。编制了三维数值模拟程序,对由多孔阳极层、气体流动管道、固体支撑平板构成的单个复合管道进行了研究。结果显示:重整反应主要发生在多孔材料靠近流动管道的薄层内,只有靠近管道入口处才能在较深处进行;电化学反应发生在多孔层与电解质的交界面处;重整反应生成的H2、CO扩散到多孔材料底部参加电化学反应;电化学反应生成的热量供重整反应使用。说明研究范围内,SOFC阳极复合通道具有较好的传热、传质性能,化学/电化学反应存在较好的耦合关系。  相似文献   

6.
天然气内重整和外重整下SOFC多场耦合三维模拟分析   总被引:1,自引:0,他引:1       下载免费PDF全文
谢静  徐明益  班帅  孙晖  周红军 《化工学报》2019,70(1):214-226
内重整(IR)和外重整(ER)是固体氧化物燃料电池(SOFC)以天然气(NG)为燃料时的两种工作方式,不同重整方式下的电池性能、效率也不尽相同。借助有限元分析软件COMSOL Multiphysics? 5.2,以天然气为燃料,建立了电池组成为Ni-YSZ//YSZ//LSCF-GDC的ER-SOFC和IR-SOFC两种三维单电池模型。模拟结果表明:相同条件下,IR-SOFC具有比ER-SOFC更高的功率密度、燃料利用率和能量利用率;阳极重整反应主要发生在靠近燃料入口的区域内;H2和CO含量在IR-SOFC中先升高后降低,在ER-SOFC中则一直降低;IR-SOFC的温度变化更剧烈,燃料入口处温度梯度最大;越靠近集流体的区域,电解质表面的离子电流密度越大;ER-SOFC阳极不会发生热力学上的积炭现象,对于IR-SOFC,CH4热分解反应是整个阳极发生积炭的主要原因,其在燃料入口处的积炭活性高达270。  相似文献   

7.
A model predicting the temperature field in the porous reforming anode of a solid oxide fuel cell is presented herein. The model is based on mass, momentum, and heat balances of a chemically reacting mixture of gases within the porous matrix of the anode. The important novel characteristic of the model is the consideration of the both internal reforming and electrochemical reactions in the bulk of the porous anode. The electronic and ionic currents in the anodes are calculated utilizing the solution of the Poisson equations for the electric potentials in the porous medium. The transfer current density is described by the Butler–Volmer equation.The model is applied to investigate the temperature field and the reactive flow in button-shaped fuel cells with uniform and graded (multi-layer) anodes composed of Ni and YSZ particles with methane/water vapor mixture used as the fuel. The maximum temperature difference between the hot and cold spots of the anodes is found to reach up to 200 K. The results indicate that the generation of Joule heating caused by the current passing through the anode and the activation losses are the dominating heat sources compared to the gas-water shift and electrochemical reactions.  相似文献   

8.
This work is aimed at understanding the reaction mechanism of propane internal reforming in the solid oxide fuel cell (SOFC). This mechanism is important for the design and operation of SOFC internal processing of hydrocarbons. An anode-supported SOFC unit with Ni-YSZ anode operating at 800 °C was tested with direct feeding of 5% propane. CO2 reforming of propane was carried out in a reactor with Ni-YSZ catalyst to simulate internal propane processing in SOFC. The performance of this direct propane SOFC is stable. The C specie formed over the anode functional layer of SOFC can be completely removed. The major gas products of SOFC are H2, CO, CH4, C2H4 and CO2. Pseudo-steady-state internal processing of propane in the anode catalytic layer of SOFC is associated with a CO2/C3H8 molar ratio of about 1.26 and basically CO2 reforming of propane. CO2 dissociation to produce the O species to oxidize the C species from dehydrogenation and dissociation of propane and its fragments should be the major reaction during CO2 reforming of propane.  相似文献   

9.
《Ceramics International》2022,48(7):9083-9089
Direct-methane solid oxide fuel cells (DMSOFCs) have recently attracted substantial attention due to their simplified system, reduced cost, and the direct availability of methane fuel obtained from natural gas. Among oxygen-ion conductive materials, doped-ceria such as gadolinium-doped ceria (GDC) or samarium-doped ceria can be incorporated into Ni-based anodes to reinforce their coking resistance, enlarge their electrochemical reaction area, and improve the kinetics of the internal reforming/electrochemical oxidation of methane. To reduce the range of operating temperatures of DMSOFCs while maintaining their performance, the thin film deposition technique of magnetron sputtering was adopted in this work. An Ni-GDC thin-film anode and a Pt thin-film cathode were deposited on scandia-stabilized zirconia (ScSZ) electrolyte supports. This fuel cell was tested with directly supplied methane fuel (3% H2O) at 500 °C. The results demonstrated the effects of the GDC volume fraction in the anode—which was controlled by co-sputtering power—on open circuit voltage and electrochemical performance. The co-sputtered Ni-GDC anode was able to survive through 36-h operation, although there was some performance degradation. Field-emission scanning electron microscopy results revealed no formation of filamentous carbon on the Ni catalysts, despite the fact that both X-ray photoelectron spectroscopy and Raman spectroscopy analyses detected carbon coking. The relatively high performance and resistance to carbon coking of co-sputtered thin-film anode were attributed to its intrinsic small grain size.  相似文献   

10.
板翅式反应器中甲醇水蒸气重整制氢   总被引:5,自引:1,他引:4       下载免费PDF全文
潘立卫  王树东 《化工学报》2005,56(3):468-473
研制了一种高效板翅式反应器,其特点是体积相对较小,便于放置,便于扩大规模;集预热、气化、重整、催化燃烧于一体;板翅式反应器内部热量利用合理,放热反应与吸热反应、气化与冷却之间实现了较好的热量耦合;可实现完全自供热.在反应器中进行了一系列甲醇水蒸气重整的实验,考察了不同条件对甲醇重整制氢过程的影响、对反应器床层温度分布的影响,及反应器的稳定性.另外,由于板翅式结构的良好传热性,甲醇水蒸气重整在获得较高转化率的同时重整气中CO浓度较低,且反应器的稳定性良好.  相似文献   

11.
In this paper we demonstrate for the first time a compact power unit, where a methanol reforming catalyst is incorporated into the anode of a PEMFC. The proposed internal reforming methanol fuel cell (IRMFC) mainly comprises: (i) a H3PO4-imbibed polymer electrolyte based on aromatic polyethers bearing pyridine units, able to operate at 200 °C and (ii) a 200 °C active and with zero CO emissions Cu–Mn–O methanol reforming catalyst supported on copper foam. Methanol is being reformed inside the anode compartment of the fuel cell at 200 °C producing H2, which is readily oxidized at the anode to produce electricity. The IRMFC showed promising electrochemical behavior and no signs of performance degradation for more than 72 h.  相似文献   

12.
陈亚男  胡科峰  潘牧 《化工进展》2015,34(Z1):60-65
从热力学的角度对甲烷重整过程中的积炭现象进行了综述研究,分析了C-H-O三元素组分的积炭三角图以及不同甲烷重整形式的非积炭区域,包括了SMR、CDR、POM、TRM以及甲烷在燃料电池电化学阳极室中的重整过程。最后提出了热力学视角下缓解积炭的措施是联合重整能有效地减少积炭,而采用阳极注氧能够改善甲烷燃料电池的积炭现象。  相似文献   

13.
为研究甲烷在固体氧化物燃料电池中操作稳定性,分别采用共沉淀法和柠檬酸溶胶.凝胶法制备了10%CuO-Ce0.15Zr0.85O2催化剂,并以此为阳极催化剂、LSM为阴极制成了YSZ电解质支撑的SOFC单电池.用XRD对材料进行表征;用SEM对阳极,阴极进行表征.以甲烷为燃料对单电池发电性能进行测试,研究了两种不同方法制备的Cu-Ce-Zr-O阳极催化剂的抗积炭性能.相对于共沉淀法,溶胶-凝胶法制备的阳极结构和发电性能都要优于前者.长期稳定性方面,共沉淀法和溶胶.凝胶法制备的Cu-Ce-Zr-O/YSZ阳极都较传统的Ni-YSZ阳极更能够长期稳定运行.  相似文献   

14.
Biodiesel (alkyl ester of rapeseed oil) is prepared using various, methyl, ethyl and butyl alcohols through the transesterification process. Sodium hydroxide and sulfuric acid are used as catalyst for methyl alcohol, ethyl alcohol and butyl alcohol respectively. Biodiesel-water formulations are formulated using water and emulsifiers like sodium lauryl sulphate (SLS) and SPAN 80 in a high shear mixer. The formulations are tested at 800 °C as fuel for internal reforming in solid oxide fuel cells (SOFCs). The formulations based on methyl and butyl esters require the use of emulsifiers to prepare stable emulsions, while ethyl esters are able to form stable emulsions without emulsifiers. The decrease in the biodiesel concentration of formulation does not have any effect on the power density of the ethyl ester formulation. Fuel cells fuelled with 20% formulations lasted longer than 50% formulations in all the formulations tested as result of increase in steam carbon ratio resulting in effective removal of carbon deposited on the anode surface. Butyl ester formulations exhibited the worst performance in both types of formulation tests. The best performance was exhibited by 20% ethyl formulation in terms of life of the cell but 50% methyl ester formulations exhibit the highest power density.  相似文献   

15.
The performance of biogas-fed solid oxide fuel cell (SOFC) systems utilizing different reforming agents (steam, air and combined air/steam) has been investigated via thermodynamic analysis to determine the most suitable feed. The boundary of carbon formation was first calculated to specify the minimum amount of each reforming agent necessary to avoid carbon formation. The SOFC performance (electrical efficiency and power density) was determined at different biogas compositions and reforming agent:biogas ratios. The SOFC performance is better when the methane content in the biogas is higher. Steam is considered to be the most suitable reforming agent in this study as the steam-fed SOFC offers much higher power density than the air-fed SOFC although its electrical efficiency is slightly lower. When steam is added in the air-fed SOFC as in the case of the co-fed SOFC, the power density can be improved but the electrical efficiency becomes lower compared with the case of the air-fed SOFC. Finally, in order to improve the electrical efficiency of the steam-fed SOFC, the biogas split option was proposed. It was found that a higher electrical efficiency can be achieved. In addition, although the power density is lowered by this operation, the value is still higher than the case of the air-fed SOFC.  相似文献   

16.
This work examines the effect of various hydrocarbons on fuel processor light-off and reforming. Major hydrocarbon fuel constituents, such as aliphatic compounds, napthanes, and aromatics have been compared with the fuel processing performance of blended fuel components and reformulated gasoline to examine synergistic or detrimental effects the fuel components have in a real fuel blend.

Short chained aliphatic hydrocarbons tend to have favorable light-off and reforming characteristics for catalytic autothermal reforming compared with longer-chained and aromatic components. Oxygenated hydrocarbons have lower light-off requirements than do pure hydrocarbons. Gas phase oxidation favors higher cetane # fuels, which tend to be longer chained hydrocarbons. Energy consumption during the start-up process shows a large fuel effect. Methanol and dimethylether (DME) show lower start-up energy demands for the fuel processor start-up than do high temperature reforming hydrocarbon fuels such as methane, gasoline and ethanol. Aromatics and longer chained hydrocarbons show a higher tendency for carbon formation, increasing the amount of carbon formed during the light-off phase while the addition of oxygenates tends to lower the carbon formed during the start-up process.  相似文献   


17.
The feasibility of operating a solid oxide fuel cell (SOFC) on biogas has been studied over a wide compositional range of biogas, using a small tubular solid oxide fuel cell system operating at 850 °C. It is possible to run the SOFC on biogas, even at remarkably low levels of methane, at which conventional heat engines would not work. The power output varies with methane content, with maximum power production occurring at 45% methane, corresponding to maximal production of H2 and CO through internal dry reforming. Direct electrocatalytic oxidation of methane does not contribute to the power output of the cell. At higher methane contents methane decomposition becomes significant, leading to increased H2 production, and hence transiently higher power production, and deleterious carbon deposition and thus eventual cell deactivation.  相似文献   

18.
A Ru/CGO catalyst was investigated in combination with a Cu current collector for the direct electro-oxidation and internal reforming of propane in a solid oxide fuel cell. The electrochemical power densities for the direct oxidation were larger than in the internal reforming process at 750 °C. The electrochemical performance in the presence of propane was significantly affected by the polarization resistance which was about three times larger than that obtained for the SOFC fed with hydrogen at 750 °C. However, out-of-cell steam reforming tests showed a C3H8 conversion to syngas approaching 90% at 800 °C. Thus, significant enhancements may be achieved by properly optimizing the anode structure. No formation of carbon deposits was observed both upon operation of the anode in the direct oxidation and internal reforming processes at 750 °C.  相似文献   

19.
严文锐  张劲  王海宁  卢善富  相艳 《化工进展》2021,40(6):2980-2992
甲醇作为一种安全便捷的液态储氢燃料,具有高含氢量以及高体积能量密度,可经重整为富氢气后与燃料电池系统集成为重整甲醇高温聚合物电解质膜燃料电池,从而高效地将甲醇和氧气的化学能转变为电能。本文针对重整甲醇高温聚合物电解质膜燃料电池的不同类型(外置重整型和内置重整型),分别对其系统集成的实现与发展进行了总结,并介绍了其现阶段在军用和民用方面的应用情况,同时指出了技术研究与应用存在的瓶颈,并对未来的研究方向进行了展望。未来提升重整甲醇高温聚合物电解质膜燃料电池性能的努力在于开发低温工作的高效甲醇重整催化剂,以及高温稳定运行的聚合物电解质膜和非贵金属材料等燃料电池关键材料。  相似文献   

20.
A solid oxide fuel cell (SOFC) with a Ni-yttria-stabilized zirconia anode of 1 cm2 area was set up with a porous disk of gadolinia-doped ceria-impregnated FeCr as a gas diffusion layer (GDL) under direct-methane feeding. In this setup of SOFC plus GDL, the tests at 800 °C and ambient pressure show that the current density, the methane conversion rate, the product formation rates, and the CO2 selectivity increased with increasing methane concentration. The major reaction in the GDL is CO2 reforming of methane to produce the syngas (CO plus H2). The anodic electrochemical oxidation of CO from GDL results in an overall rate of CO2 formation being much larger than that of CO formation. There is a synergy between the rate of reaction in the GDL and that over the anode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号