首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Golgi compartments of the yeast Saccharomyces cerevisiaeare dispersed within the cytoplasm, in contrast to the stacked cisternae in the mammalian cell, and consequently are observed as a punctate pattern by immunofluorescent staining of Golgi-marker proteins. The VIG4/VRG4 gene encodes the essential yeast GDP-mannose transporter, which is a polytopic membrane protein in the early and medial Golgi compartments. Upon overexpression of this gene by the aid of a strong promoter and multicopy vector, we found that stacked multivesicular structures, which resembled the cisternae of mammalian Golgi apparatus, had developed in S. cerevisiae. Immuno-electron microscopy showed that the GDP-mannose transporter was located on the stacked cisternae. Immuno-isolation and immunoblotting analyses of the vesicles showed that the overproduced GDP-mannose transporter also co-localized with the Golgi glycosyltransferases, but not with the ER- or late Golgi-marker proteins as in the control cell. We propose that the localization mechanism of the GDP-mannose transporter in the Golgi compartment would be efficient and hardly saturable, and therefore the overproduced protein induced a progression of Golgi-like compartments rather than being mislocalized in other compartments, such as the ER or a vacuole.  相似文献   

2.
A Hansenula polymorpha mutant with enhanced ability to secrete a heterologous protein has been isolated. The mutation defines a gene, designated OPU24, which encodes a protein highly homologous to GDP-mannose pyrophosphorylase Psa1p/Srb1p/Vig9p of Saccharomyces cerevisiae and CaSrb1p of Candida albicans. The opu24 mutant manifests phenotypes similar to those of S. cerevisiae mutants depleted for GDP-mannose, such as cell wall fragility and defects in N- and O-glycosylation of secreted proteins. The influence of the opu24 mutation on endoplasmic reticulum-associated protein degradation is discussed. The GenBank Accession No. for the OPU24 sequence is AF234177.  相似文献   

3.
Transfer of activated sugar-nucleotides from the cytoplasm to the lumen of the Golgi is an essential requirement for glycosylation of glycoproteins, proteoglycans and glycosphingolipids. Although mannosylation is the major modification in the yeast Saccharomyces cerevisiae, several reports suggest the presence of galactose residues on yeast proteins and sphingolipids. We have detected alpha-galactosylated O-linked chitinase by lectin blotting from cells that functionally express the gma12(+) gene, encoding alpha 1,2-galactosyltransferase from Schizosaccharomyces pombe. This result implies the presence of a UDP-galactose transporter in S. cerevisiae. A conserved gene, HUT1, which encodes a putative multi-transmembrane protein, was cloned and characterized for its possible involvement in galactosylation. The HUT1 gene is not essential and is expressed at a relatively low level under the physiological conditions we examined. The disruption of this gene did not show any apparent impairments in glycosylation. However, a temperature- and concentration-dependent increase in UDP--galactose transport activity was detected from cells overexpressing HUT1 in the presence of gma12(+). The surface of these cells was confirmed to carry galactose residues by staining with FITC-conjugated alpha-galactose-specific lectin. These results suggest a role for Hut1p in the transport of UDP--galactose from the cytosol into the Golgi lumen in S. cerevisiae.  相似文献   

4.
A role for the cAMP-dependent pathway in regulation of the cell wall in the model yeast Saccharomyces cerevisiae has recently been demonstrated. In this study we report the results of a phenotypic analysis of a Candida albicans mutant, characterized by a constitutive activation of the cAMP pathway due to deletion of PDE2, the gene encoding the high cAMP-affinity phosphodiesterase. Unlike wild-type strains, this mutant has an increased sensitivity to cell wall and membrane perturbing agents such as SDS and CFW, and antifungals such as amphotericin B and flucytosine. Moreover, the mutant is characterized by an altered sensitivity and a significantly reduced tolerance to fluconazole. The mutant's membrane has around 30% higher ergosterol content and the cell wall glucan was 22% lower than in the wild-type. These cell wall and membrane changes are manifested by a considerable reduction in the thickness of the cell wall, which in the mutant is on average 60-65 nm, compared to 80-85 nm in the wild-type strains as revealed by electron microscopy. These results suggest that constitutive activation of the cAMP pathway affects cell wall and membrane structure, and biosynthesis, not only in the model yeast S. cerevisiae but also in the human fungal pathogen C. albicans.  相似文献   

5.
We report the sequences of two genomic regions from the pathogenic yeast Candida glabrata and their comparison to Saccharomyces cerevisiae. A 3 kb region from C. glabrata was sequenced that contains homologues of the S. cerevisiae genes TFB3, MRPL28 and STP1. The equivalent region in S. cerevisiae includes a fourth gene, MFA1, coding for mating factor a. The absence of MFA1 is consistent with C. glabrata's asexual life cycle, although we cannot exclude the possibility that a-factor gene(s) are located somewhere else in its genome. We also report the sequence of a 16 kb region from C. glabrata that contains a five-gene cluster similar to S. cerevisiae chromosome XI (including GCN3) followed by a four-gene cluster similar to chromosome XV (including HIS3). A small-scale rearrangement of gene order has occurred in the chromosome XI-like section.  相似文献   

6.
Phosphomannomutase (PMM) is a key enzyme, which catalyses one of the first steps in the glycosylation pathway, the conversion of D-mannose-6-phosphate to D-mannose-1-phosphate. The latter is the substrate for the synthesis of GDP-mannose, which serves as the mannosyl donor for the glycosylation reactions in eukaryotic cells. In the yeast Saccharomyces cerevisiae PMM is encoded by the gene SEC53 (ScSEC53) and the deficiency of PMM activity leads to severe defects in both protein glycosylation and secretion. We report here on the isolation of the Kluyveromyces lactis SEC53 (KlSEC53) gene from a genomic library by virtue of its ability to complement a Saccharomyces cerevisiae sec53 mutation. The sequenced DNA fragment contained an open reading frame of 765 bp, coding for a predicted polypeptide, KlSec53p, of 254 amino acids. The KlSec53p displays a high degree of homology with phosphomannomutases from other yeast species, protozoans, plants and humans. Our results have demonstrated that KlSEC53 is the functional homologue of the ScSEC53 gene. Like ScSEC53, the KlSEC53 gene is essential for K. lactis cell viability. Phenotypic analysis of a K. lactis strain overexpressing the KlSEC53 gene revealed defects expected for impaired cell wall integrity.  相似文献   

7.
A gene homologous to Saccharomyces cerevisiae MNN9 has been cloned and characterized in the methylotrophic yeast Hansenula polymorpha. This gene was cloned from a H. polymorpha genomic DNA library using the S. cerevisiae MNN9 gene as a probe. The H. polymorpha MNN9 homologue (HpMNN9) contained a 1062 bp open reading frame encoding a predicted protein of 354 amino acids. The deduced amino acid sequence showed 58% and 51% identity, respectively, with the S. cerevisiae and Candida albicans Mnn9 proteins. Disruption of HpMNN9 leads to phenotypic effects suggestive of cell wall defects, including detergent sensitivity and hygromycin B sensitivity. The hygromycin B sensitivity of S. cerevisiae mnn9 null mutant was complemented in the presence of the HpMNN9 gene. The DNA sequence of the H. polymorpha homologue has been submitted to GenBank with the Accession No. AF264786.  相似文献   

8.
9.
Saccharomyces cerevisiae sphinganine C4-hydroxylase encoded by the SUR2 gene catalyses the conversion of sphinganine to phytosphingosine. We isolated the SUR2 gene from Pichia ciferrii using nucleotide sequence homology to S. cerevisiae SUR2 to study hydroxylation of sphinganine in the sphingoid base overproducing yeast P. ciferrii. A positive clone was confirmed by nucleotide sequencing. A syringomycin-E resistance phenotype of a S. cerevisiae sur2-null mutant was complemented by expression of the cloned P. ciferrii SUR2 gene. Restoration of phytosphingosine production in the complemented strain was also confirmed, indicating that the cloned gene is a functional homologue of S. cerevisiae SUR2. .  相似文献   

10.
A gene homologous to Saccharomyces cerevisiae ACS genes, coding for acetyl-CoA synthetase, has been cloned from the yeast Zygosaccharomyces bailii ISA 1307, by using reverse genetic approaches. A probe obtained by PCR amplification from Z. bailii DNA, using primers derived from two conserved regions of yeast ACS proteins, RIGAIHSVVF (ScAcs1p; 210-219) and RVDDVVNVSG (ScAcs1p; 574-583), was used for screening a Z. bailii genomic library. Nine clones with partially overlapping inserts were isolated. The sequenced DNA fragment contains a complete ORF of 2027 bp (ZbACS2) and the deduced polypeptide shares significant homologies with the products of ACS2 genes from S. cerevisiae and Kluyveromyces lactis (81% and 82% identity and 84% and 89% similarity, respectively). Phylogenetic analysis shows that the sequence of Zbacs2 is more closely related to the sequences from Acs2 than to those from Acs1 proteins. Moreover, this analysis revealed that the gene duplication producing Acs1 and Acs2 proteins has occurred in the common ancestor of S. cerevisiae, K. lactis, Candida albicans, C. glabrata and Debaryomyces hansenii lineages. Additionally, the cloned gene allowed growth of S. cerevisiae Scacs2 null mutant, in medium containing glucose as the only carbon and energy source, indicating that it encodes a functional acetyl-CoA synthetase. Also, S. cerevisiae cells expressing ZbACS2 have a shorter lag time, in medium containing glucose (2%, w/v) plus acetic acid (0.1-0.35%, v/v). No differences in cell response to acetic acid stress were detected both by specific growth and death rates. The mode of regulation of ZbACS2 appears to be different from ScACS2 and KlACS2, being subject to repression by a glucose pulse in acetic acid-grown cells.  相似文献   

11.
The conserved family of fungal Ste20 p21-activated serine-threonine protein kinases regulate several signalling cascades. In Saccharomyces cerevisiae Ste20 is involved in pheromone signalling, invasive growth, the hypertonic stress response, cell wall integrity and binds Cdc42, a Rho-like small GTP-binding protein required for polarized morphogenesis. We have cloned the STE20 homologue from the fungal pathogen Candida glabrata and have shown that it is present in a single copy in the genome. Translation of the nucleotide sequence predicts that C. glabrata Ste20 contains a highly conserved p21-activated serine-threonine protein kinase domain, a binding site for G-protein beta subunits and a regulatory Rho-binding domain that enables the kinase to interact with Cdc42 and/or Rho-like small GTPases. C. glabrata Ste20 has 53% identity and 58% predicted amino acid similarity to S. cerevisiae Ste20 and can complement both the nitrogen starvation-induced filamentation and mating defects of S. cerevisiae ste20 mutants. Analysis of ste20 null and disrupted strains suggest that in C. glabrata Ste20 is required for a fully functional hypertonic stress response and intact cell wall integrity pathway. C. glabrata Ste20 is not required for nitrogen starvation-induced filamentation. Survival analysis revealed that C. glabrata ste20 mutants, while still able to cause disease, are mildly attenuated for virulence compared to reconstituted STE20 cells.  相似文献   

12.
13.
Although yeast are generally non-haemolytic, we have found that addition of alcohol vapour confers haemolytic properties on many strains of yeast and other fungi. We have called this phenomenon 'microbial alcohol-conferred haemolysis' (MACH). MACH is species- and strain-specific: whereas all six Candida tropicalis strains tested were haemolytic in the presence of ethanol, none among 10 C. glabrata strains tested exhibited this phenomenon. Among 27 C. albicans strains and 11 Saccharomyces cerevisiae strains tested, ethanol-mediated haemolysis was observed in 11 and 4 strains, respectively. Haemolysis is also dependent on the alcohol moiety: n-butanol and n-pentanol could also confer haemolysis, whereas methanol and 2-propanol did not. Haemolysis was found to be dependent on initial oxidation of the alcohol. Reduced haemolysis was observed in specific alcohol dehydrogenase mutants of both Aspergillus nidulans and S. cerevisiae. MACH was not observed during anaerobic growth, and was reduced in the presence of pararosaniline, an aldehyde scavenger. Results suggest that initial oxidation of the alcohol to the corresponding aldehyde is an essential step in the observed phenomenon.  相似文献   

14.
The Saccharomyces cerevisiae TIM10 gene encodes one of the few essential mitochondrial proteins that are required for the import of nuclear-encoded precursor proteins from the cytosol and their subsequent sorting into the different mitochondrial compartments. We have isolated and characterized a putative homologue of TIM10 from the halotolerant yeast Pichia sorbitophila. The Pichia TIM10 gene encodes a protein of 90 amino acids with 66% identity to S. cerevisiae Tim10p. It was capable of suppressing the temperature sensitivity of tim10-1 mutant in S. cerevisiae, suggesting that Pichia TIM10 is both a functional and structural homologue of S. cerevisiae TIM10. The putative Pichia TIM10 gene product contains all the four conserved cysteine residues and the two CX(3)C motifs typical of the Tim family proteins in the mitochondrial intermembrane space. Using anti-Tim10p serum, Western blots detected a protein of about 10 kDa, suggesting that the Pichia Tim10p is a mitochondrial protein. The results suggest that mitochondrial import and sorting systems might be also strongly conserved in other fungi. The coding sequence of the P. sorbitophila TIM10 has been deposited in the EMBL Nucleotide Sequence Database under Accession No. AJ243940.  相似文献   

15.
To elucidate the roles of genes involved in the cell wall biogenesis and function in Saccharomyces cerevisiae, we isolated and characterized mutants that were lethal in a strain in which the SED1 gene encoding a cell wall mannoprotein was disrupted. Thus, double mutants of SED1 and either MNN9 or MNN10 were unable to grow and YOL155c on a multicopy plasmid could suppress their synthetic lethality. A Yol155cp-GFP fusion protein was found to localize to the cell wall, suggesting that it might also be a cell wall mannoprotein. Subsequently, we analysed the effects of the shut-off of SED1 in a sed1 and mnn9 double mutant: cells after the shut-off showed anomalous cellular morphology and died in the mitotic M phase. From these and other results, we postulate that these genes function cooperatively with each other and in a cell cycle-dependent manner in the biogenesis and maintenance of cell wall in S. cerevisiae.  相似文献   

16.
Myosin II is important for normal cytokinesis and cell wall maintenance in yeast cells. Myosin II-deficient (myo1) strains of the budding yeast Saccharomyces cerevisiae are hypersensitive to nikkomycin Z (NZ), a competitive inhibitor of chitin synthase III (Chs3p), a phenotype that is consistent with compromised cell wall integrity in this mutant. To explain this observation, we hypothesized that the absence of myosin type II will alter the normal levels of proteins that regulate cell wall integrity and that this deficiency can be overcome by the overexpression of their corresponding genes. We further hypothesized that such genes would restore normal (wild-type) NZ resistance. A haploid myo1 strain was transformed with a yeast pRS316-GAL1-cDNA expression library and the cells were positively selected with an inhibitory dose of NZ. We found that high expression of the ubiquitin-conjugating protein cDNA, UBC4, restores NZ resistance to myo1 cells. Downregulation of the cell wall stress pathway and changes in cell wall properties in these cells suggested that changes in cell wall architecture were induced by overexpression of UBC4. UBC4-dependent resistance to NZ in myo1 cells was not prevented by the proteasome inhibitor clasto-lactacystin-beta-lactone and required the expression of the vacuolar protein sorting gene VPS4, suggesting that rescue of cell wall integrity involves sorting of ubiquitinated proteins to the PVC/LE-vacuole pathway. These results point to Ubc4p as an important enzyme in the process of cell wall remodelling in myo1 cells.  相似文献   

17.
We report the cloning and sequencing of a gene from Kluyveromyces lactis with high homology to the SRB10 gene (alias UME5, SSN3, GIG2, NUT7, RYE5) from Saccharomyces cerevisiae and other organisms. The KlSRB10 gene is located in a similar configuration to that found in S. cerevisiae, flanked by NOT4 and a gene with high similarity to YPL041c. The translated protein contains 593 amino acids and the characteristic domains of kinases from the CMGC subgroup. The functional relationship to yeast SRB10 is demonstrated by complementation of mutant phenotypes in a haploid S. cerevisiae strain containing a null allele.  相似文献   

18.
SUN proteins of Saccharomyces cerevisiae have been defined on the basis of high homologies in their C-terminal domain. Recently, two of these four proteins were shown to be involved in cell wall morphogenesis (Mouassite et al., 2000a). In the present study, we have isolated WMSU1 (Accession No. AF418983), a new SUN-related gene, from W. saturnus var. mrakii MUCL 41968. Sequencing of the gene revealed an open reading frame coding for 402 amino acids. The predicted amino acid sequence of WMSU1 is closely related to the S. cerevisiae SUN proteins and to other yeast proteins involved in cell wall metabolism. WMSU1 is proposed to encode a cell wall protein since its predicted product contains a signal sequence, a Kex2p cleavage site and a serine/threonine-rich N-terminal domain. Southern blot analysis of the W. saturnus var. mrakii MUCL 41968 genome using the highly conserved domain of WMSU1 as a probe suggested that the isolated gene belongs to a multigenic family. Expression of WMSU1 in E. coli led to a 45 kDa protein, which appeared to be toxic to this host. Scanning electron microscopy analysis of a recombinant S. cerevisiae producing Wmsu1p showed that this strain exhibited an altered cell wall, thus pointing to a probable role of this protein in the cell wall structure.  相似文献   

19.
Wild-type Saccharomyces cerevisiae tubulin does not bind the anti-mitotic microtubule stabilizing agent paclitaxel. Previously, we introduced mutations into the S. cerevisiae gene for beta-tubulin that imparted paclitaxel binding to the protein, but the mutant strain was not sensitive to paclitaxel and other microtubule-stabilizing agents, due to the multiple ABC transporters in the membranes of budding yeast. Here, we introduced the mutated beta-tubulin gene into a S. cerevisiae strain with diminished transporter activity and developed the first paclitaxel-sensitive budding yeast strain. In the presence of paclitaxel, cytoplasmic microtubules were stable to cold depolymerization. Paclitaxel-treated cells showed evidence of a mitotic block, with an increase in large-budded cells and cells with a 2N DNA content and DNA fragmentation, identified by FACS analysis and the TUNEL assay. In the presence of paclitaxel, the number of dead cells in cultures increased three-fold and cells containing reactive oxygen species were present. We conclude that paclitaxel blocks mitosis in this strain, leading to an apoptotic-like cell death. This strain will also be useful in further studies of the effect of microtubule dynamics on various cellular processes in S. cerevisiae.  相似文献   

20.
A cell surface engineering system of yeast Saccharomyces cerevisiae has been established and novel yeasts armed by biocatalysts (enzymes-glucoamylase, alpha-amylase, CM-cellulase, beta-glucosidase, and lipase), termed "arming yeasts", were constructed. The gene encoding Rhizopus oryzae glucoamylase with its secretion signal peptide was fused with the gene encoding the C-terminal half of yeast alpha-agglutinin and expressed in S. cerevisiae. Glucoamylase was shown to be displayed on the cell surface in its active form and anchored covalently to the cell wall. S. cerevisiae itself is unable to utilize starch, while the surface-engineered yeast could grow on starch as the sole carbon source. For further improvement of the ability to directly ferment starchy materials by the cell surface-engineered yeast, engineered yeasts displaying two amylolytic enzymes on the cell surface were constructed. The gene encoding R. oryzae glucoamylase with its own secretion signal peptide and a truncated fragment of the alpha-amylase gene from Bacillus stearothermophilus with the prepro secretion signal sequence of the yeast alpha-factor were fused with the gene encoding the C-terminal half of the yeast alpha-agglutinin. The surface-engineered yeast co-displaying glucoamylase and alpha-amylase by the integration of their genes into the chromosomes could grow faster on starch as the sole carbon source than the engineered cells displaying only glucoamylase. The system was further applied to the construction of a novel cellulose-utilizing yeast by displaying cellulolytic enzymes in their active form on the cell surface of S. cerevisiae. Engineered yeasts co-displaying FI-carboxymethylcellulase (CM-cellulase), one of the endo-type cellulases, and beta-glucosidase from Aspergillus aculeatus on their cell surface were also constructed. The yeasts displaying these cellulases were given the ability to assimilate cellooligosaccharide, suggesting the possibility that the assimilation of cellulosic materials may be carried out by S. cerevisiae displaying heterologous cellulase proteins on the cell surface. The system has also been used for the cell surface display of R. oryzae lipase (ROL). Linker peptides (spacers) consisting of the Gly/Ser repeat sequence were inserted at the C-terminal portion of ROL to enhance the lipase activity. The insertion of an appropriate length of a linker peptide as a spacer is effective in the display of ROL, having the active region at the C-terminal portion, on the cell surface. Thus, cell surface engineering will be capable of conferring novel additional abilities upon living cells and will herald a new era in the field of biotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号