首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substrate specificity of the avian renal organic cation exchanger was examined in isolated renal brush-border membrane vesicles. Endobiotic and xenobiotic organic cations (OCs) were tested at a concentration of 100 microM for cis-inhibition of 14C-tetraethylammonium (TEA)/H+ exchange and at 1 mM for trans-stimulation of 14C-TEA efflux. The xenobiotic cations amiloride, cimetidine, mepiperphenidol, procainamide, quinidine, quinine, and ranitidine cis-inhibited TEA uptake >/= 80%; isoproterenol and unlabeled TEA inhibited uptake at least 30%. In contrast, the endogenous cations acetylcholine, choline, and guanidine did not inhibit TEA uptake; however, epinephrine, N1-methylnicotinamide, serotonin, and thiamine inhibited uptake as much as 60%. Each endogenous cation, except thiamine, trans-stimulated TEA efflux, and xenobiotic cations, excluding isoproterenol and TEA, trans-inhibited TEA efflux. The data suggest that the avian renal tubule luminal OC exchanger has greater affinity for xenobiotic cations than for endobiotic cations, but greater transport capacity for endobiotics than for xenobiotics.  相似文献   

2.
To evaluate the effect of cadmium intoxication on renal transport systems for organic anions and cations, transport of p-aminohippurate (PAH) and tetraethylammonium (TEA) were studied in renal cortical plasma membrane vesicles isolated from cadmium-intoxicated rats. Cadmium intoxication was induced by daily injections of CdCl2 (2 mg Cd/kg.day sc) for 2-3 weeks. Renal plasma membrane vesicles were prepared by Percoll gradient centrifugation and magnesium precipitation method. Vesicular uptake of substrate was determined by rapid filtration technique using Millipore filter. The cadmium treatment resulted in a marked attenuation of Na(+)-dependent, alpha-ketoglutarate (alpha KG)-driven PAH uptake in the basolateral membrane vesicle (BLMV), and this was due to a reduction in Vmax and not K(m). The Na(+)-alpha KG symport activity of the BLMV was not affected by 2-week cadmium treatment, but it was significantly inhibited by 3-week cadmium treatment. On the other hand, the alpha KG-PAH antiport activity of the BLMV appeared to be markedly suppressed in 2-week as well as 3-week cadmium-treated animals. The cadmium treatment inhibited the proton gradient-dependent TEA transport in the brush-border membrane vesicle (BBMV), and this was associated with a reduction in Vmax with no change in K(m). These results indicate that cadmium exposures may impair the capacities for organic anion transport in the proximal tubular basolateral membrane and organic cation transport in the luminal membrane. The cadmium effect on organic anion transport is attributed mainly to an inhibition of dicarboxylate-organic anion antiport system.  相似文献   

3.
The protective effects of betamipron (BP, N-benzoyl-beta-alanine) against nephrotoxicity induced by repeated cisplatin injections were examined. The ratio of the kidney weight to body weight and the lipid peroxide level after treatment with cisplatin plus BP tended to be larger and lower than those after treatment with cisplatin plus alkaline solution, respectively. The blood urea nitrogen, serum creatinine and glutathione levels in the animals treated with cisplatin plus BP differed significantly from those in the animals treated with cisplatin plus alkaline solution. Furthermore, the mechanism of the preventive effects of BP was analyzed for cisplatin-induced nephrotoxicity. The concentration of cisplatin in the renal cortex significantly decreased with concomitant BP. BP inhibited the uptake of cisplatin into the renal cortex in a competitive manner in the same way as an anionic transport inhibitor, probenecid. The treatment with BP appears to be useful for the renal toxicity induced by repeated cisplatin administration.  相似文献   

4.
The effects of fatty acid sucrose esters on membrane lipid dynamics and ceftibuten transport by rat intestinal brush-border membrane vesicles (BBMV) were examined to clarify the differences in the action of mono- and poly-acyl sucrose esters on the drug transport. Fatty acid sucrose mono-acyl ester (SS) inhibited ceftibuten transport by BBMV similar to the action of polyoxyethylene sorbitans (Tweens), while fatty acid sucrose polyacyl ester mixtures (F-160 and F-140) did not affect the drug transport by BBMV. SS but not F-160 and F-140 caused an increase in the anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH)- and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene iodide (TMA-DPH)-labeled BBMV in a concentration-dependent manner. Thus, the uptake of ceftibuten by BBMV was strongly correlated with the lipid fluidity of BBMV, in the outer layer and in the inner hydrophobic regions; however, there was no strong correlation between the membrane lipid fluidity and the drug uptake by BBMV. The micelle size and the size distribution of F-160 and F-140 were larger and more widely dispersed, respectively, compared to those of SS and Tweens. These results suggest that the effects of fatty acid sucrose esters on ceftibuten transport by BBMV are related to the dispersion parameter of these pharmaceutical adjuvants.  相似文献   

5.
Exposure to cadmium (Cd) impairs renal transport systems for glucose, amino acids, phosphate, and dicarboxylates. To investigate if these changes are directly related to a Cd binding to the renal brush-border membrane, Cd binding and the Na+-dependent uptakes of d-glucose, l-alanine, phosphate, and succinate were determined in rat renal brush-border membrane vesicles (BBMV) exposed to CdCl2. Cd uptake by BBMV showed time and concentration dependence. Changes in medium osmolality had no effect on Cd uptake, indicating that the process primarily involves binding of Cd to the membrane. Scatchard analysis indicated the presence of two types of Cd binding sites, differing in affinity and number. Increasing the medium Cd concentration from 50 to 200 microM resulted in a progressive increase in Cd binding to the membrane and decrease in Na+-dependent transport of d-glucose, l-alanine, inorganic phosphate, and succinate. In all cases, the inhibition of transport was directly proportional to the total amount of Cd binding to the membrane. These results suggest that, during chronic exposure to Cd, free Cd ions liberated in renal tubular cells may directly interact with brush-border membranes and impair Na+-dependent solute transports.  相似文献   

6.
BACKGROUND: Iron plays a role in free radical-mediated tissue injury, including cisplatin-induced nephrotoxicity. However, the source of iron (catalyzing free radical reactions) is not known. We examined the role of cytochrome P-450 as a source of catalytic iron in cisplatin-induced nephrotoxicity both in vivo and in vitro. METHODS: Cisplatin-induced acute renal failure was produced in rats by intraperitoneal injection of cisplatin (10 mg/kg body wt). Piperonyl butoxide, a cytochrome P-450 inhibitor, was administered intraperitoneally (400 mg/kg body wt twice at 48-hr intervals) prior to cisplatin injection. The effects of cisplatin in the absence or presence of piperonyl butoxide on the belomycin-detectable iron, cytochrome P-450 content in the kidney, and renal functional and histological changes were evaluated. In an in vitro study, the effect of cytochrome P-450 inhibitors, cimetidine or piperonyl butoxide, on cisplatin-induced cytotoxicity and catalytic iron release from LLC-PK1 cells was examined. RESULTS: In cisplatin-treated rats, there was a marked decrease in the cytochrome P-450 content specifically in the kidney, accompanied by increased bleomycin-detectable iron content in the kidney. Piperonyl butoxide prevented cisplatin-induced loss of cytochrome P-450 as well as the increase of bleomycin-detectable iron in the kidney, along with both functional and histological protection. Both cimetidine and piperonyl butoxide prevented cisplatin-induced increase in bleomycin-detectable iron and cytotoxicity in LLC-PK1 cells. Treatment of cimetidine did not affect cellular uptake of cisplatin. CONCLUSION: Cytochrome P-450, a group of heme proteins, may serve as a significant source of catalytic iron in cisplatin-induced nephrotoxicity.  相似文献   

7.
The mechanism(s) for uptake of organic cations by renal cortical tubules was (were) examined further. Renal cortical tubules were purified from rat kidneys by a Percoll gradient centrifugation technique. Bicarbonate buffer (Krebs-Henseleit, KHS) conditions were altered, and chemical modulators were used which affect the activity of the basolateral Na+/K+-ATPase. Renal tubule uptake of the achiral organic cation amantadine was determined. The cardiac glycosides digoxin and acetylstrophanthidin and ouabagenin did not alter amantadine uptake by either proximal or distal tubule fragments in KHS. However, ouabain inhibited proximal tubule amantadine uptake in a dose-dependent manner with lower potency than distal tubule amantadine uptake in KHS. Ouabain did not inhibit amantadine tubule uptake in phosphate buffer. However, inhibition of amantadine uptake by ouabain returned in a time-dependent manner upon addition of bicarbonate to the phosphate buffer. Low extracellular sodium or potassium did not alter amantadine uptake by proximal tubules. Hypokalemic and hypokalemic/ hyponatremic conditions decreased the inhibitory potency of ouabain for amantadine uptake by proximal tubules. For distal tubules, both hyponatremic and hypokalemic conditions, alone and together, decreased the inhibitory potency of ouabain, but did not affect amantadine uptake in the absence of ouabain. Hypochloremic conditions decreased affinity for amantadine uptake by distal, but not proximal tubules. No change in maximal transport capacity for amantadine uptake was observed under hypochloremic conditions for either tubule fragment. These studies challenge the widely accepted concept of Na+/ K+-adenosine triphosphatase activity and maintenance of the basolateral membrane potential as rate-limiting steps for the energy-dependent renal tubule uptake of organic cations. Furthermore, these studies suggest a mechanism for ouabain inhibition of organic cation renal tubule uptake that may not involve the Na+/K+-adenosine triphosphatase and may be possibly bicarbonate-dependent.  相似文献   

8.
The effects of the coadministration of procainamide and probenecid on the pharmacokinetic behavior of sultopride, an antipsychotic agent, after intravenous administration were studied with rats. The areas under the concentration-time curve for and renal clearances of (+)-sultopride and (-)-sultopride, which exist as organic cations under physiological pH conditions, were significantly decreased (p < 0.01) by the coadministration of procainamide, an organic cation under physiological pH conditions. The renal clearance of (-)-sultopride was partially decreased (p < 0.05) by the coadministration of probenecid, an organic anion under physiological pH conditions. The results suggest that drug-drug interactions between organic cations and organic anions occur to a certain extent during the tubular secretion process in rats.  相似文献   

9.
BACKGROUND: Epidermal growth factor (EGF) has been shown to increase intestinal absorptive surface area and transport function in normal animals. AIMS: To examine the effect of EGF on absorptive surface area and brush border membrane function in a model of massive small bowel resection. METHODS: New Zealand white rabbits were randomised into two groups: a resected group (60% proximal small bowel resection); and an unmanipulated control group. Distal remnant tissue was examined 10 and 21 days postsurgery. In separate experiments oral EGF (40 g/kg/day) was administered to resected animals from days 3 to 8 and animals were studied on day 10. RESULTS: Ten days postsurgery brush border surface area and total absorptive surface area were significantly increased in remnant tissue while brush border membrane vesicle (BBMV) glucose uptake was significantly decreased compared with controls. By 21 days brush border surface area returned to control levels though BBMV glucose uptake remained depressed. EGF treatment induced a further increase in brush border surface area in remnant intestine but did not alter BBMV glucose uptake. CONCLUSIONS: Surgical resection results in significant elevations in absorptive surface area coupled with a decrease in brush border membrane transport function distal to the site of anastomosis. EGF enhances glucose uptake in remnant intestine via recruitment of additional microvillus membrane into the brush border.  相似文献   

10.
Recently, a polyspecific organic cation transporter, hOCT1, was cloned from human liver. To date, limited studies examining the functional characteristics of the transporter have been performed. The purpose of the present study was to develop a mammalian expression system for hOCT1 and to characterize the interactions of various compounds with the cloned transporter. Lipofection was used to transiently transfect the hOCT1 plasmid DNA in a human cell line, HeLa. We tested the interaction of an array of organic cations and other compounds with hOCT1 by determining Ki values in inhibiting 14C-tetraethylammonium (TEA) transport in the transfected cells. Transient expression of hOCT1 activity was observed between 24 and 72 hr post-transfection, with maximal expression at approximately 40 hr. TEA transport was temperature dependent and saturable with Vmax and K(m) values of 2.89 +/- 0.448 nmol/mg protein/30 min and 229 +/- 78.4 microM, respectively. 14C-TEA uptake in hOCT1 plasmid DNA-transfected HeLa cells was trans-stimulated by unlabeled TEA and 1-methyl-4-phenyl-pyridinium. Organic cations, including clonidine, quinine, quinidine and verapamil (0.1 mM), significantly inhibited 14C-TEA uptake, whereas the organic anion, p-aminohippuric acid (5 mM), did not. The neutral compounds, corticosterone (Ki, 7.0 microM) and midazolam (Ki, 3.7 microM) potently inhibited 14C-TEA uptake. The Ki values of several compounds in interacting with hOCT1 differed substantially from the corresponding values for the rat organic cation transporter, rOCT1, and the human kidney-specific organic cation transporter, hOCT2, determined in previous studies. Transiently transfected HeLa cells represent a useful tool in studying the interactions and kinetics of organic cations and other xenobiotics with hOCT1 and in understanding the molecular events involved in organic cation transport.  相似文献   

11.
Cationic drugs of different types and structures (antihistaminics, antiarrhythmics, sedatives, opiates, cytostatics and antibiotics, for example) are excreted in mammals by epithelial cells of the renal proximal tubules and by hepatocytes in the liver. In the proximal tubules, two functionally disparate transport systems are involved which are localized in the basolateral and luminal plasma membrane and are different from the previously identified neuronal monoamine transporters and ATP-dependent multidrug exporting proteins. Here we report the isolation of a complementary DNA from rat kidney that encodes a 556-amino-acid membrane protein, OCT1, which has the functional characteristics of organic cation uptake over the basolateral membrane of renal proximal tubules and of organic cation uptake into hepatocytes. OCT1 is not homologous to any other known protein and is found in kidney, liver and intestine. As OCT1 translocates hydrophobic and hydrophilic organic cations of different structures, it is considered to be a new prototype of polyspecific transporters that are important for drug elimination.  相似文献   

12.
The effects of thymoquinone (TQ) on cisplatin-induced nephrotoxicity in mice and rats were studied. Oral administration of TQ (50 mg/L in drinking water) for 5 days before and 5 days after single injections of cisplatin (5 mg/kg, i.v., in rats and 7 or 14 mg/kg, i.p., in mice) greatly ameliorated cisplatin-induced nephrotoxicity in both species. In rats, i.v. cisplatin caused 4- and 5-fold elevations in serum urea and creatinine, a 235% increase in urine volume, a 41% increase in kidney weight, 8.5-fold decrease in creatinine clearance, and extensive histological damage 5 days after treatment. In mice, similar alterations in kidney function were observed. TQ-induced amelioration of cisplatin nephrotoxicity was evident by significant reductions in serum urea and creatinine and significant improvement in polyuria, kidney weight, and creatinine clearance. The protective effects of TQ against cisplatin-induced nephrotoxicity in the rat were further confirmed by histopathological examination. To evaluate the possible modification of the antitumor activity of cisplatin by TQ, we studied their interaction in Ehrlich ascites carcinoma (EAC) bearing mice. The results revealed that TQ potentiated the antitumor activity of cisplatin. The current study suggests that TQ may improve the therapeutic index of cisplatin.  相似文献   

13.
PURPOSE: The effects of fosfomycin and imipenem/cilastatin on the nephrotoxicity of vancomycin were studied in rats, and those on the renal handling of vancomycin were also investigated in perfused kidneys. METHODS: The protective effects of fosfomycin and imipenem/cilastatin on vancomycin nephrotoxicity were evaluated by increases in plasma concentration of creatinine and urea nitrogen in rats. The urinary excretion of vancomycin was measured and analyzed kinetically in the perfused rat kidney. RESULTS: The nephrotoxicity induced by vancomycin (500 mg/kg, i.v.) was inhibited almost completely by co-administration of fosfomycin or imipenem/cilastatin. In the perfused rat kidney, the excretion ratio of vancomycin was less than those of p-aminohippurate and cimetidine, and greater than that of arbekacin, suggesting the secretion and reabsorption of vancomycin in renal tubules. The tissue/perfusate ratios of unbound vancomycin were not significantly changed by co-treatment with fosfomycin or imipenem/cilastatin. Imipenem/cilastatin significantly decreased the excretion ratio of vancomycin. Fosfomycin also decreased vancomycin excretion ratio, although this effect was not significant. CONCLUSIONS: The renal handling of vancomycin was different from those of organic anions and cations and an aminoglycoside antibiotic. The protective effects of fosfomycin and imipenem/cilastatin against the nephrotoxicity of vancomycin might be partly due to the change in renal handling of vancomycin, probably in its tubular secretion/ reabsorption, in rats.  相似文献   

14.
We demonstrate that the angiotensin-converting enzyme inhibitors enalapril and captopril inhibit the transport of D-Phe-L-Gln into PepT1-expressing Xenopus oocytes and into rat renal cortical brush border membrane vesicles (BBMV). The kinetics of inhibition are competitive. Enalapril and captopril are not substrates for PepT2 (Boll et al., Proc. Natl. Acad. Sci. 93 (1996) 284-289). Therefore we conclude that in rat renal cortical BBMV this neutral dipeptide is transported via PepT1.  相似文献   

15.
The previously cloned rat cation transporter rOCT1 detected in renal proximal tubules and hepatocytes (Gründemann, D., Gorboulev, V., Gambaryan, S., Veyhl, M., and Koepsell, H. (1994) Nature 372, 549-552) was expressed in Xenopus oocytes, and transport properties were analyzed using tracer uptake studies and electrophysiological measurements. rOCT1 induced highly active transport of a variety of cations, including the classical substrates for cation transport, such as N-1-methylnicotinamide, 1-methyl-4-phenylpyridinium (MPP), and tetraethylammonium (TEA), but also the physiologically important choline. In oocytes rOCT1 also mediated efflux of MPP, which could be trans-stimulated by MPP and TEA. Cation transport via rOCT1 was electrogenic. In voltage-clamped oocytes, transport of TEA and choline via rOCT1 produced inwardly directed currents, which were independent of extracellular ion composition or pH. The choline- and TEA-induced currents were voltage-dependent at nonsaturating concentrations, and the apparent affinity of these cations was decreased at depolarized voltages. Other substrates transported by rOCT1 were the polyamines spermine and spermidine. Interestingly, the previously described potent inhibitors of rOCT1, cyanine 863, quinine, and D-tubocurarine were substrates themselves. The data indicate that rOCT1 is an effective transport system that is responsible for electrogenic uptake of a wide variety of organic cations into epithelial cells of renal proximal tubules and hepatocytes.  相似文献   

16.
The nephrotoxicity of cephaloridine, cefazolin and mercuric chloride was studied in rabbits of various ages. Cephaloridine produced dose-related elevations in serum urea nitrogen, creatinine and renal tubular necrosis in adult and 30-day-old rabbits, only slight changes at 15 days of age and no effect in 5-day-old rabbits. Cefazolin also produced dose-related nephrotoxicity in adult rabbits but no effect in 15-day-old rabbits. Mercuric chloride administration resulted in similar nephrotoxicity in 5-, 15- and 30-day-old rabbits and adults. The development of susceptibility to cephaloridine nephrotoxicity paralleled the maturation of the renal anionic transport system as determined by the accumulation of p-aminohippurate by renal cortical slices in vitro. Substrate stimulation of the anionic transport system by p-aminohippurate or penicillin increased the nephrotoxicity of cephaloridine in between rabbits. The authors concluded that the lack of cephaloridine nephrotoxicity in newborn rabbits is due to the incomplete development of the renal anionic transport system.  相似文献   

17.
PURPOSE: The aims of this study were to establish a kinetic means of analyzing the membrane transport of organic cations in renal epithelial cells, and to simultaneously evaluate drug interactions in apical and basolateral membranes. METHODS: Tetraethylammonium (TEA) transport was measured using LLC-PK1 cell monolayers grown on microporous membrane filters. After incubating the cells with unlabeled TEA or other drugs, apical or basolateral medium was changed to that containing labeled TEA, and transcellular transport and cellular accumulation were measured. Clearance from apical medium to cells (CL12), cells to apical medium (CL21), cells to basolateral medium (CL23) and basolateral medium to cells (CL32) were calculated based on a three compartment model. RESULTS: TEA was accumulated progressively in the monolayers from the basolateral side and was transported unidirectionally to the apical side. CL32 was greater than CL12 and CL23 was greater than CL21. Therefore, the rate limiting step of TEA transport from the basolateral to the apical medium was the cell-to-apical step. Co-incubation of TEA with procainamide decreased the transport parameters of TEA, CL12, CL21 and CL32, whereas that with levofloxacin decreased only CL12 and CL21, not affecting the parameters in basolateral membranes. CONCLUSIONS: Using a simple model, we analyzed the transport of organic cation in kidney epithelial cell line, LLC-PK1. This method can be useful for the analysis of cation transport and drug interactions in the apical and basolateral membranes of renal tubules.  相似文献   

18.
The systemic clearance of many quinolone antibiotics is mainly via metabolism and urinary excretion; by contrast, biliary excretion is a major route of elimination for a new quinolone grepafloxacin (GPFX). Accordingly, we studied the hepatic uptake of GPFX because it is the first step in the drug's hepatobiliary transport. The hepatic uptake of GPFX in vivo after i.v. administration was found to approach the hepatic blood flow, suggesting the existence of an effective hepatic uptake mechanism. To clarify this transport mechanism, GPFX uptake by isolated rat hepatocytes was examined and found to consist of a saturable component (Km 173 microM, Vmax 6.96 nmol/min/mg) and a nonspecific diffusion component. The inhibition of GPFX uptake by ATP-depletors and a lack of effect after replacing Na+ with choline demonstrated that the uptake was an Na+-independent carrier-mediated active process. This uptake was inhibited by other quinolones and for lomefloxacin this was competitive in nature. Mutual inhibition studies were undertaken to investigate whether the transporter for GPFX might be the same as other transporters so far identified. GPFX inhibited the uptake of taurocholic acid, pravastatin (organic anion), cimetidine (organic cation) and ouabain (neutral steroid). However, GPFX uptake was not inhibited by these compounds. Confirmation that GPFX uptake is blood flow limited was obtained by extrapolation of the in vitro data based on mathematical modeling. In conclusion, the effective hepatic uptake of quinolone antibiotics are via carrier-mediated active transport, which is distinct from that involved in the transport of bile acids, organic anions, organic cations or neutral steroids.  相似文献   

19.
BACKGROUND: The sevoflurane degradation product compound A is nephrotoxic in rats, in which it undergoes extensive metabolism to glutathione and cysteine S-conjugates. The mechanism of compound A nephrotoxicity in rats is unknown. Compound A nephrotoxicity has not been observed in humans. The authors tested the hypothesis that renal uptake of compound A S-conjugates and metabolism by renal cysteine conjugate beta-lyase mediate compound A nephrotoxicity in rats. METHODS: Compound A (0-0.3 mmol/kg in initial dose-response experiments and 0.2 mmol/kg in subsequent inhibitor experiments) was administered to Fischer 344 rats by intraperitoneal injection. Inhibitor experiments consisted of three groups: inhibitor (control), compound A, or inhibitor plus compound A. The inhibitors were probenecid (0.5 mmol/kg, repeated 10 h later), an inhibitor of renal organic anion transport and S-conjugate uptake; acivicin (10 mg/kg and 5 mg/kg 10 h later), an inhibitor of gamma-glutamyl transferase, an enzyme that cleaves glutathione conjugates to cysteine conjugates; and aminooxyacetic acid (0.5 mmol/kg and 0.25 mmol/kg 10 h later), an inhibitor of renal cysteine conjugate beta-lyase. Urine was collected for 24 h and then the animals were killed. Nephrotoxicity was assessed by light microscopic examination and biochemical markers (serum urea nitrogen and creatinine concentration, urine volume and urine excretion of protein, glucose, and alpha-glutathione-S-transferase [alpha GST], a marker of tubular necrosis). RESULTS: Compound A caused dose-related nephrotoxicity, as shown by selective proximal tubular cell necrosis at the corticomedullary junction, diuresis, proteinuria, glucosuria, and increased alpha GST excretion. Probenecid pretreatment significantly (P < 0.05) diminished compound A-induced increases (mean +/- SE) in urine excretion of protein (45.5 +/- 3.8 mg/24 h vs. 25.9 +/- 1.7 mg/24 h), glucose (28.8 +/- 6.2 mg/24 h vs. 10.9 +/- 3.2 mg/24 h), and alpha GST (6.3 +/- 0.8 micrograms/24 h vs. 1.0 +/- 0.2 microgram/24 h) and completely prevented proximal tubular cell necrosis. Aminooxyacetic acid pretreatment significantly diminished compound A-induced increases in urine volume (19.7 +/- 3.5 ml/24 h vs. 9.8 +/- 0.8 ml/24 h), protein excretion (37.2 +/- 2.7 mg/24 h vs. 22.2 +/- 1.8 mg/24 h), and alpha GST excretion (5.8 +/- 1.5 vs. 2.3 micrograms/24 h +/- 0.8 microgram/24 h) but did not significantly alter the histologic pattern of injury. In contrast, acivicin pretreatment increased the compound A-induced histologic and biochemical markers of injury. Compound A-related increases in urine fluoride excretion, reflecting compound A metabolism, were not substantially altered by any of the inhibitor treatments. CONCLUSIONS: Intraperitoneal compound A administration provides a satisfactory model of nephrotoxicity. Aminooxyacetic acid and probenecid significantly diminished histologic and biochemical evidence of compound A nephrotoxicity, whereas acivicin potentiated toxicity. These results suggest that renal uptake of compound A-glutathione or compound A-cysteine conjugates and cysteine conjugates metabolism by renal beta-lyase mediate, in part, compound A nephrotoxicity in rats.  相似文献   

20.
The acute renal effects of chemotherapy are known, but long-term nephrotoxicity has rarely been investigated. The aim of the present study was to assess long-term renal function in children and adolescents who received at-risk chemotherapy, including cisplatin, ifosfamide, and methotrexate, to treat an osteosarcoma. Renal function tests [creatinine clearance, microalbuminuria, and renal excretion of sodium, potassium, chloride, calcium, magnesium (Mg), phosphorus (P), and uric acid] were prospectively performed 5.4+/-2.2 (+/-SD) years after chemotherapy (total cumulative dose: methotrexate 41+/-31 g/m2, ifosfamide 39+/-14 g/m2, cisplatin 674+/-188 mg/m2) in 18 children and adolescents. The results were compared with 13 normal volunteers matched for age and sex. Creatinine clearance, which was greater than 80 ml/min per 1.73 m2 in all patients, correlated with the total dose of ifosfamide (r=0.55, P<0.05) and cisplatin (r=0.48, P<0.05). Microalbuminuria was noted in 4 patients. Hypomagnesemia was present in 4 and hypercalciuria in 3 patients; renal excretion of P, Mg, and uric acid was higher in patients than in controls. Glomerular function was not significantly altered and only mild tubular dysfunction was present. Since renal excretion of P and Mg were increased in patients compared with normal volunteers and hypercalciuria was occasionally seen, divalent ion disorders are the most-likely potential complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号