首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2·0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m2/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.  相似文献   

2.
Vicat softening point temperature (T V) and heat deflection temperature (T d) are important parameters for characterization of heat resistant properties of polymeric materials. PP/Al(OH)3/Mg(OH)2 flame retardant composites were prepared using a twin-screw extruder, and the T V and T d of the composites were measured. The results showed that the T V and T d increased nonlinearly with an addition of the weight percentage of the flame retardant additives except for individual data points, while the T V and T d decreased with increasing the filler particle size when the content of flame retardant additives was constant. Under the same conditions, filling small amount of zinc borate into the composites might improve the heat resistant properties of the composite systems. Moreover, the morphology of the impact fracture surface of the specimens was observed by means of scanning electron microscope to understand the dispersion and distribution of the filler particles in the PP matrix.  相似文献   

3.

Abstract  

Molecular sieves, complex organic bases and radical oxidants are commonly used in alcohols oxidation reactions. In this work, we have evaluated the beneficial effects of addition of K2CO3 to Pd(II)-catalyzed oxidation alcohols, which resulted in a remarkable increase in the oxidation reaction rates without selectivity losses. Herein, in a metallic reoxidant-free system, terpenic alcohols (β-citronellol, nerol and geraniol) were selectively converted into respective aldehydes from Pd(II)-catalyzed oxidation reactions in presence of dioxygen. High conversions and selectivities (greater than 90%) were achieved in the presence of the Pd(OAc)2/K2CO3 catalyst and pyridine excess. The exogenous role of others auxiliary anionic and nitrogen compounds was appraised.  相似文献   

4.
5.
Spinel Li4Mn5O12 was prepared by a sol–gel method. The manganese oxide and activated carbon composite (MnO2-AC) were prepared by a method in which KMnO4 was reduced by activated carbon (AC). The products were characterized by XRD and FTIR. The hybrid supercapacitor was fabricated with Li4Mn5O12 and MnO2-AC, which were used as materials of the two electrodes. The pseudocapacitance performance of the Li4Mn5O12/MnO2-AC hybrid supercapacitor was studied in various aqueous electrolytes. Electrochemical properties of the Li4Mn5O12/MnO2-AC hybrid supercapacitor were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the hybrid supercapacitor has electrochemical capacitance performance. The charge/discharge test showed that the specific capacitance of 51.3 F g−1 was obtained within potential range of 0–1.3 V at a charge/discharge current density of 100 mA g−1 in 1 mol L−1 Li2SO4 solution. The charge/discharge mechanism of Li4Mn5O12 and MnO2-AC was discussed.  相似文献   

6.
Explored was the combustion of Fe2O3/TiO2/Al thermit mixtures in steel tubes upon variation in green composition and with special emphasis on the dependence of combustion temperature T c and burning velocity U on reaction heat Q. Special attention was given to incompleteness of combustion for compositions with low Q.  相似文献   

7.
In this paper, for the first time, synthesis of [Ba(H2O)8][Ni(dipic)2] complex and preparation of NiBaO2 nano-oxide are reported through thermal decomposition under surfactant free condition. This novel complex was characterized by Fourier transform infrared spectroscopy (FT-IR), ultra violet–visible spectroscopy, conductivity measurement and elemental analysis. Formation of novel nanoparticles was supported by FT-IR and energy-dispersive X-ray spectroscopy and the orthorhombic structure of nanocrystals was confirmed by powder X-ray diffraction analysis. In addition, size distribution as well as uniform morphology of prepared nano-oxide were recorded by dynamic light scattering analysis and field-emission scanning electron microscopy, respectively. Magnetic features measured by vibrating sample magnetometer, illustrate superparamagnetic behavior of the oxide.  相似文献   

8.
The following investigation reports the synthesis of novel complex [Fe(opd)3]2[Ba(CN)8] and preparation of BaFe2O4 nanoparticles through thermal decomposition without using any surfactant. The complex was characterized via Furrier transform infrared spectroscopy (FT-IR), ultra violet-visible spectroscopy (UV–vis), conductivity measurement and elemental analysis. The synthesized crystals of inorganic precursor complex was transferred to furnace, where they were calcined under normal atmosphere condition at 900 °C for 4 h. Formation of BaFe2O4 was supported by FT-IR and energy-dispersive X-ray analysis. Hexagonal structure of nano-oxide was confirmed on powder X-ray diffraction. Furthermore, uniform morphology of nanocrystals were reported by scanning electron microscopy. The saturation magnetization (22 emu/g), remanent magnetization (6 emu/g) and coercivity (400 Oe) reported on vibrating sample magnetometer curve illustrates the promising industrial and medicinal applications of prepared mixed oxide.  相似文献   

9.
A novel intumescent flame retardant (IFR), containing ammonium polyphosphate (APP) and poly(hexamethylene terephthalamide) (PA6T), was prepared for acrylonitrile–butadiene–styrene (ABS). Limiting oxygen index (LOI), vertical burning test (UL-94), thermogravimetric analysis (TGA) were used to investigate the flammability property and thermal stability of the IFR/ABS systems. It was found that the flame retardancy of the IFR/ABS systems was improved significantly. When the components of the IFR were 25% APP and 5% PA6T, the LOI value of IFR/ABS system reached to the maximum of 29, but only UL-94V-1 rating was passed. Thus, Al(H2PO2)3 was incorporated into ABS/APP/PA6T system as a synergistic agent, it was found 2% addition of Al(H2PO2)3 caused PA6T/APP/PA6T/Al(H2PO2)3 (70/23.3/4.7/2) to pass V-0 rating of UL-94 test. Meanwhile, the TGA curves indicated that PA6T could be effective as a charring agent and there was a synergistic reaction between PA6T and APP, which effectively promoted the char formation of IFR/ABS composites. Moreover, the residual char obtained after the LOI test of the IFR/ABS was characterized by Fourier transform infrared spectra (FTIR). Results indicated that P–O–C chemical bond was formed in the residual char, which could indicate the cross-linking reaction between PA6T and APP could occur. Furthermore, scanning electron microscopy (SEM) was used to investigate the morphology of the residual char formed in the LOI tests. It was revealed that both ABS/APP/PA6T (70/25/5) and PA6T/APP/PA6T/Al(H2PO2)3 (70/23.3/4.7/2) formed uniform and compact intumescent charred layers.  相似文献   

10.
The polytherms of ice melting in sections of the Ca(NO3)2-Mg(NO3)2-CO(NH2)2-H2O system with different component ratios were studied in the temperature interval from 0 to −40°C. A series of nitrate and nitrate-carbonate reagents that are promising for the creation of anti-acing reagents were found, which form eutectics with ice at temperatures from −25 to −39°C. Their properties, viz., melting properties with respect to ice and corrosiveness on metals and alloys, were determined. An effective corrosion inhibitor was selected.  相似文献   

11.
The highly ordered mesoporous CoFe2O4 and CuFe2O4 with crystalline walls can be synthesized by hard template with using mesoporous silica SBA-15 as hard template and using ferric nitrate, cobalt nitrate, and copper nitrate as metal precursors. These new mesoporous materials above have high surface areas, narrow pore size distribution, and large pore volumes, which are believed to be valuable for the potential application in the field of sensors, catalysis, message recording, magnetics, and biology. This work provides a method to fabricate the highly ordered mesoporous materials composed of multi-metal oxides with crystalline walls. The development of such versatile approach is of great significance in practical application. It can be envisaged that this established method is significantly expandable to the controlled synthesis of the mesoporous functional materials with diverse compositions.  相似文献   

12.
A new compound of (Rb,K)2Cu3(P2O7)2 is obtained by high-temperature reactions from a mixture of RbNO3, KNO3, Cu(NO3)2, and (NH4)4P2O7. The crystal structure was solved by direct methods and refined to R 1 = 0.056 for 5022 independent reflections. The compound belongs to a rhombic crystal system, P212121, Z = 8, a = 9.9410(7) Å, b = 13.4754(6) Å, c = 18.6353 (3) Å, and R = 0.056. The basis of the structure is a complex copper-phosphate skeleton of the composition of [Cu3(P2O7)2]2–, which can be regarded as consisting of two types of heteropolyhedral layers parallel to the (001) plane. The layers are alternated with each other, forming a frame, in the cavities of which the positions of alkali cations are located, statistically populated with K+ and Rb+ ions. Based on the refined populations of the positions of alkali cations, an exact chemical formula of the compound can be written as Rb1.28K0.72Cu3(P2O7)2. The compound is the most complex among those known to this day of the composition of A2 IB3 II(P2O7)2 (A = Li, Na, K, Rb, or Cs; B = Ni, Cu, or Zn).  相似文献   

13.
14.
Two methods were used to obtain a catalytically active oxide coating on the surface of titanium for the catalytic afterburning of diesel soot: plasma electrochemical formation of an oxide film on the surface of titanium and extraction pyrolytic deposition of the Li2Cu2(MoO4)3 compound. The Li2Cu2(MoO4)3/TiO2 + SiO2/Ti compositions synthesized by the single-step extraction pyrolytic treatment of the oxidized surface of titanium ensured a high burning rate of soot of ∼300°C. The subsequent deposition of Li2Cu2(MoO4)3 lowers the activity of the catalyst, due probably to the growth of molybdate phase crystallites and the filling of open oxide film pores. Double lithium-copper molybdate is able to reduce appreciably the concentration of CO in the oxidation products of soot. The advantages of these methods are the possibility of forming high-cohesion durable coatings on surfaces of any complexity, the simplicity of their implementation, and high productivity and low cost. The obtained results can be recommended for use in developing methods for creating composite coatings on catalytic soot filters.  相似文献   

15.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

16.
Several modifications of manganese dioxide (MnO2) were investigated for use in composite electrode materials for oxygen evolution, the target application being anodes for the industrial electrowinning of metals. It is demonstrated that the performance of this material depends strongly on the modifications of MnO2. All modifications investigated were found to be more active than the usual anode of lead alloyed with silver (PbAg) used in zinc electrowinning. A composite sample containing chemical manganese dioxide (CMD) was found to give an oxygen evolution overpotential 0.25 V lower than the standard PbAg anode material. In the second part of the article, we investigate the effect of varying several parameters of the composite electrode assembly, including the size of the catalyst particles and percentage of the catalyst material used. A model is proposed where the performance of the material is proportional to the total length of the boundaries between the lead matrix material and the MnO2 catalyst particles. Physicochemical processes contributing to the observed data are discussed.  相似文献   

17.
Results of the characterization of six Co-based Fischer–Tropsch (FT) catalysts, with 15% Co loading and supported on SiO2 and Al2O3, are presented. Room temperature X-ray diffraction (XRD), temperature and magnetic field (H) variation of the magnetization (M), and low-temperature (5 K) electron magnetic resonance (EMR) are used for determining the electronic states (Co0, CoO, Co3O4, Co2+) of cobalt. Performance of these catalysts for FT synthesis is tested at reaction temperature of 240 °C and pressure of 20 bars. Under these conditions, 15% Co/SiO2 catalysts yield higher CO and syngas conversions with higher methane selectivity than 15% Co/Al2O3 catalysts. Conversely the Al2O3 supported catalysts gave much higher selectivity towards olefins than Co/SiO2. These results yield the correlation that the presence of Co3O4 yield higher methane selectivity whereas the presence of Co2+ species yields lower methane selectivity but higher olefin selectivity. The activities and selectivities are found to be stable for 55 h on-stream.  相似文献   

18.
The EPR spectra of compounds in the LaAlO3-La0.67Sr0.33Mn y O3 system at a frequency of 9.4 GHz have been investigated at the temperatures T = 77 and 300 K as a function of the manganese concentration y (y = 0.015, 0.030, 0.080). It has been revealed that, in the paramagnetic state at y = 0.015, there exist isolated Mn2+ and Mn4+ ions, which has been confirmed by simulating the EPR spectra. The parameters of the EPR spectra have been determined. The effective magnetic moments μeff of the Mn2+ and Mn4+ ions have been calculated from the EPR spectra. It has been demonstrated that an increase in the Mn concentration leads to a decrease in the number of isolated ions and to the formation of new spin clusters. This manifests itself in the predominance of a broad line with weak traces of the hyperfine structure due to the isolated manganese ions.  相似文献   

19.
Infrared (IR) guided missiles are real threat; they caused 90% of aircraft damage. Fluorocarbon polymer nanocomposite based on super-thermites can offer superior thermal signature to countermeasure IR guided missile seekers. This study reports on the sustainable fabrication of mono-dispersed colloidal Fe2O3 nanoparticles with 3 nm average particle size. Fe2O3 nanoparticles were dispersed in acetone for subsequent integration in fluorocarbon polymer. The impact of Fe2O3 content on thermal signature was evaluated using (FT-MIR 2–6 μm) spectrophotometer. Nanocomposite polymer with 8 wt% Fe2O3 offered an increase in the average intensity of α (2–3 μm) and β (4–5 μm) bands by 50 and 85% respectively to that of reference formulation. Quantification of stimulated emitting species in the combustion flame was conducted using ICT thermodynamic code. The developed nanothermite particles extended the primary reaction zone by 183%. Full discussions about combustion zones with associated exothermic chemical reactions have been represented.  相似文献   

20.
Hydrotalcite was synthesized from hydroxide-form precursors to prepare a novel high-temperature CO2 sorbent, and the effect of Mg/Al ratio on CO2 sorption was studied. To enhance the CO2 sorption capacity of the sorbent, K2CO3 was coprecipitated during the synthetic reaction. X-ray diffraction analysis indicated that the prepared samples had a well-defined crystalline hydrotalcite structure, and confirmed that K2CO3 was successfully coprecipitated in the samples. The morphology of the hydrotalcite was confirmed by scanning electron microscopy, and N2 adsorption analysis was used to estimate its surface area and pore volume. In addition, thermogravimetric analysis was used to measure its CO2 sorption capacity, and the results revealed that the Mg: Al: K2CO3 ratio used in the preparation has an optimum value for maximum CO2 sorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号