首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Performance of CeO2-La2O3/ZSM-5 sorbents for sulfur removal was examined at temperature ranging from 500 oC to 700 oC. The sulfur capacity of 5Ce5La/ZSM-5 was much bigger than that of CeO2/ZSM-5. H2 had a negative impact on the sulfidation; however, CO had little influence on sulfur removal. The characterization results showed that CeO2 and La2O3 were well dispersed on ZSM-5 because of the intimate admixing of La2O3 and CeO2, the major sulfidation products were Ce2O2S and La2O2S, the XRD and SEM results revealed that ZSM-5 structure could remain intact during preparation and sulfidation process, the H2-TPR showed that the reducibility of CeO2 can be remarkably enhanced by addition of La.  相似文献   

2.
The catalytic oxidation of hydrogen sulfide (H2S) to elemental sulfur was studied over CeO2-TiO2 catalysts. The synthesized catalysts were characterized by various techniques such as X-ray diffraction, BET, X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption of ammonia, and scanning electron microscopy (SEM). Catalytic performance studies of the CeO2-TiO2 catalysts showed that H2S was successfully converted to elemental sulfur without considerable emission of sulfur dioxide. CeO2-TiO2 catalysts with Ce/Ti=1/5 and 1/3 exhibited the highest H2S conversion, possibly due to the uniform dispersion of metal oxides, high surface area, and high amount of acid sites.  相似文献   

3.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

4.
In this study, degradation aspects and kinetics of organics in a decontamination process were considered in the degradation experiments of advanced oxidation processes (AOP),i.e., UV, UV/H2O, and UV/H2O,/TiO2 systems. In the oxalic acid degradation with different H2O2 concentrations, it was found that oxalic acid was degraded with the first order reaction and the highest degradation rate was observed at 0.1 M of hydrogen peroxide. Degradation rate of oxalic acid was much higher than that of citric acid, irrespective of degradation methods, assuming that degradation aspects are related to chemical structures. Of methods, the TiO2 mediated photocatalysis showed the highest rate constant for oxalic acid and citric acid degradation. It was clearly showed that advanced oxidation processes were effective means to degrade recalcitrant organic compounds existing in a decontamination process.  相似文献   

5.
The selective oxidation of hydrogen sulfide containing excess water and ammonia was studied over vanadium oxide-based catalysts. The investigation was focused on the role of V2O5, and phase cooperation between V2O5 and Bi2O3 in this reaction. The conversion of H2S continued to decrease since V2O5 was gradually reduced by treatment with H2S. The activity of V2O5 was recovered by contact with oxygen. A strong synergistic phenomenon in catalytic activity was observed for the mechanically mixed catalysts of V2O5 and Bi2O3. Temperature-programmed reduction (TPR) and oxidation (TPO) and two bed reaction tests were performed to explain this synergistic effect by the reoxidation ability of Bi2O3. This paper is dedicated to Professor Wha Young Lee on the occasion of his retirement from Seoul National University.  相似文献   

6.
The sulfur removing capacities of various Zn-Ti-based sorbents were investigated in the presence of H2O and HCl at high-(sulfidation, 650 °C; regeneration, 800 °C) and medium-(sulfidation, 480 °C; regeneration, 580 °C) temperature conditions. The H2O effect of all sorbents was not observed at high-temperature conditions. At mediumtemperature conditions, the reaction rate of ZT (Zn/Ti : 1.5) sorbent decreased with the level of H2O concentration, while modified (ZTC, ZTN) sorbents were not affected by the water vapor. HCl vapor resulted in the deactivation of ZT sorbent with a cycle number at high-temperature due to the production of ZnCl2 while the sulfur removing capacities of ZTC and ZTN sorbents were maintained during 4–5 cyclic tests. In the case of medium-temperature conditions, ZT sorbent was poisoned by HCl vapor while cobalt and nickel added to ZT sorbent played an important catalytic role to prevent from being poisoned by HCl due to providing heat, emitted when these additives quickly react with H2S even at medium-temperature conditions, to the sorbents  相似文献   

7.
This paper presents the measurement and simulation data on the thermal and chemical structure of an atmospheric-pressure premixed H2/O2/N2 flame doped with iron pentacarbonyl Fe(CO)5. Soft ionization molecular beam mass spectrometry was used to measure concentration profiles of the combustion products of iron pentacarbonyl: Fe, FeO2, FeOH, and Fe(OH)2. A comparison of experimental and simulated concentration profiles showed that they are in satisfactory agreement for FeO2 and Fe(OH)2 and differ significantly for Fe and FeOH. Thus, the previously proposed kinetic model for the oxidation of iron pentacarbonyl was tested and it was shown that the mechanism needs further elaboration.  相似文献   

8.
The production of isophthalic acid (IPA) from the oxidation of m-xylene (MX) by air is catalyzed by H3PW12O40 (HPW) loaded on carbon and cobalt. We used H2O2 solution to oxidize the carbon to improve the catalytic activity of HPW@C catalyst. Experiments reveal that the best carbon sample is obtained by calcining the carbon at 700 °C for 4 h after being impregnated in the 3.75% H2O2 solution at 40 °C for 7 h. The surface characterization displays that the H2O2 modification leads to an increase in the acidic groups and a reduction in the basic groups on the carbon surface. The catalytic capability of the HPW@C catalyst depends on its surface chemical characteristics and physical property. The acidic groups play a more important part than the physical property. The MX conversion after 180 min reaction acquired by the HPW@C catalysts prepared from the activated carbon modified in the best condition is 3.81% over that obtained by the HPW@C catalysts prepared from the original carbon. The IPA produced by the former is 46.2% over that produced by the latter.  相似文献   

9.
The H2S corrosion inhibition of ultra high strength steel with carboxyethyl-imidazoline has been evaluated with electrochemical techniques. Tested material included a water quenched Fe–C–Mn steel micro alloyed with Si, Nb, Cr, and Ti, equivalent to an API X-120 pipeline steel, whereas electrochemical techniques included polarization curves, linear polarization resistance, electrochemical impedance spectroscopy, and electrochemical noise measurements. Tested solutions included H2S-containing 3% NaCl with and without 10 vol% of diesel and different inhibitor concentrations (0, 5, 10, 25, 50, and 100 ppm) at 50 °C. Different techniques have shown that the optimum carboxyethyl-imidazoline efficiency was obtained with 50 ppm, but the efficiency decreases as time elapsed. Corrosion rates obtained with diesel were lower than those obtained without diesel.  相似文献   

10.
A series of vanadia-titania (V-Ti) xerogel catalysts were prepared by nonhydrolytic sol-gel method. These catalysts showed much higher surface area and total pore volumes than the conventional V2O5-TiO2 xerogel. Two species of surface vanadium in the xerogel catalysts were identified by Raman measurements: monomeric vanadyl and polymeric vanadates. The selective oxidation of hydrogen sulfide in the presence of excess water and ammonia was studied over these catalysts. Xerogel catalysts from the nonhydrolytic method showed very high conversion of H2S without harmful emission of SO2. The conversion of H2S increased with increasing vanadia loading up to 10V-Ti; however, it decreased at higher vanadia loading (12V-Ti and 18V-Ti) probably due to the formation of crystalline V2O5.  相似文献   

11.
The results of the modification of AG-OV-1 activated carbon under various conditions (by atmospheric oxygen at elevated temperatures and by hydrogen peroxide or ozone) are given. The effect of the used modifier on changes in the porosity, surface state, and adsorption capacity of activated carbon is evaluated.  相似文献   

12.
At temperatures lower than 250 °C the deactivation of zeolite NaX catalyst occurred in the presence of water vapor. The gradual accumulation of water vapor on the surface of catalyst could cause deactivation of catalyst. The zeolite NaX-WO3 catalysts were prepared to study a method preventing deactivation of catalysts from the adsorption of water vapor. The zeolite NaX-WO3 (9 : 1) with a low content of WO3 showed the highest conversion of H2S. It is believed that the addition of WO3 caused either a decrease of the strong adsorption of water vapor on the zeolite NaX or an increase of the reducibility of WO3 by some interactions between zeolite NaX and WO3. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

13.
0.1 Fe/Ti mole ratio of Fe-TiO2 catalysts were synthesized via solvothermal method and calcined at various temperatures: 300, 400, and 500 °C. The calcined catalysts were characterized by XRD, N2-adsorption-desorption, UV-DRS, XRF, and Zeta potential and tested for photocatalytic degradation of alachlor under visible light. The calcined catalysts consisted only of anatase phase. The BET specific surface area decreased with the calcination temperatures. The doping Fe ion induced a red shift of absorption capacity from UV to the visible region. The Fe-TiO2 calcined at 400 °C showed the highest photocatalytic activity on degradation of alachlor with assistance of 30 mM H2O2 at pH 3 under visible light irradiation. The degradation fitted well with Langmuir-Hinshelwood model that gave adsorption coefficient and the reaction rate constant of 0.683 L mg−1 and 0.136 mg/L·min, respectively.  相似文献   

14.
15.
The selective oxidation of hydrogen sulfide in the presence of excess water and ammonia was investigated by using vanadium-bismuth based mixed oxide catalysts. Synergistic effect on catalytic activity was observed for the mechanical mixtures of V-Bi-O and Sb2O4. Temperature programmed oxidation (TPO), X-ray photoelectron spectroscopy (XPS), and two separated bed reactivity test results supported the role of Sb2O4 for reoxidizing the reduced V-Bi-O during the reaction. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

16.
The effect of the nature of the support of a Co catalyst on the synthesis of hydrocarbons from CO, H2, and C2H4 was studied in this work. It was found that the introduction of ethylene into synthesis gas resulted in an increase in the yield of liquid hydrocarbons. In this case, the conversion of C2H4 was complete and the degree of its involvement into the synthesis of C5+ hydrocarbons depended on the concentration of this component in the starting mixture and the nature of the support. Specific features of the adsorption of CO and C2H4 on the used Co catalysts were determined using a temperature-programmed desorption method.  相似文献   

17.
A detailed analysis of potential versus time measurements at galvanostatic charge/discharge conditions (external current change from −1 to +1 mA cm−2) for two La–Ni alloys in Ar-saturated 0.1 M KOH solution is presented. It is shown that passivation of the electrodes does not affect the potential jump as a result of current switching over. The value of potential jump allows to calculate the exchange current density for H2O/H2 system on the tested material. Anodic potential of the hydrogenated electrode (at i a = const) linearly increases with logarithm of time which allows to evaluate precisely time necessary for oxidation of hydrogen absorbed during cathodic charging. The method described enables to determine effectiveness of hydrogen absorption by materials applied for negative electrodes of NiMH batteries.  相似文献   

18.
In this study, B12N12 nanocage sensor function for H2S absorption was examined theoretically. For this purpose, the interaction between B12N12 nanocage with H2S gas in both ground and excited states have been investigated by DFT and TD-DFT methods. Interaction between nanocage with H2S gas in ground state were studied with electron localization function, charge decomposition analysis and natural bond orbitals. TD-DFT calculations for B12N12 cage and Sc-substituted cage suggest that the optical properties of the cage can be improved by Sc-substitution. Survey the absorption uv spectrum of Sc@(BN)12 after gas absorption showed this substituted nanocage is more favorable as an optic sensor. UV–Vis spectra display new absorption peaks confirming sensing ability of Sc-substituted B12N12 for detection of H2S molecule. Subsequently in viewpoint of absorption, charge transfer mechanism via the photo-induced electron transfer process was investigated. Also desired nanosensor has short recovery time because adsorption energy of H2S molecule is not too large. So it is expected that Sc-substituted B12N12 nanocage acts as new potential nanosensor to detect toxic H2S molecule.  相似文献   

19.
Simultaneous removal of ternary gases of NH3, H2S and toluene in a contaminated air stream was investigated over 185 days in a biofilter packed with cork as microbial support. Multi-microorganisms including Nitrosomonas and Nitrobactor for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for H2S removal and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) was 40–120 seconds and the inlet feed concentration was 50-180 ppmv for NH3, 30–160 ppmv for H2S and 40–130 ppmv for toluene, respectively. The observed removal efficiency was 45–100% for NH3, 96–100% for H2S, and 10–99% for toluene, respectively. Maximum elimination capacity was 5.5 g/m3/hr for NH3, >20.4 g/m3/hr for H2S and 4.5 g/m3/hr for toluene, respectively. During long-term operation, the removal efficiency of toluene gradually decreased, mainly due to depositions of elemental sulfur and ammonium sulfate on the cork surface. The results of microbial analysis showed that nearly the same population density was observed on the surfaces of cork chips collected at each sampling point. Kinetic model analyses showed that there were no particular evidences of interactions or inhibitions among the microorganisms.  相似文献   

20.
A low-cost activated carbon (AC) was produced from the broom sorghum stalk using KOH as the chemical activating agent, and then the surface of AC was functionalized with diethanolamine to enhance CO2/CH4 selectivity. Characteristics of pristine and DEA-functionalized ACs were determined through different analyses such as Boehm’s method, BET, FT-IR, SEM, and TGA. The adsorption behavior of pure carbon dioxide and pure methane on these adsorbents was investigated in a temperature range of 288-308 K and pressure range of 0-25 bar using an apparatus based on a volumetric method. Results indicated that amine functionalization significantly improved the selectivity of CO2/CH4. The enhancement of CO2 ideal adsorption selectivity over CH4 from 1.51 for the pristine AC to 5.75 for the AC-DEA was attributed to adsorbate-adsorbent chemical interaction. The present DEA-functionalized AC adsorbent can be a good candidate for applications in natural gas and landfill gas purifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号