首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton exchange membrane fuel cell (PEMFC) performance degrades when carbon monoxide (CO) is present in the fuel gas; this is referred to as CO poisoning. This paper investigates CO poisoning of PEMFCs by reviewing work on the electrochemistry of CO and hydrogen, the experimental performance of PEMFCs exhibiting CO poisoning, methods to mitigate CO poisoning and theoretical models of CO poisoning. It is found that CO poisons the anode reaction through preferentially adsorbing to the platinum surface and blocking active sites, and that the CO poisoning effect is slow and reversible. There exist three methods to mitigate the effect of CO poisoning: (i) the use of a platinum alloy catalyst, (ii) higher cell operating temperature and (iii) introduction of oxygen into the fuel gas flow. Of these three methods, the third is the most practical. There are several models available in the literature for the effect of CO poisoning on a PEMFC and from the modeling efforts, it is clear that small CO oxidation rates can result in much increased performance of the anode. However, none of the existing models have considered the effect of transport phenomena in a cell, nor the effect of oxygen crossover from the cathode, which may be a significant contributor to CO tolerance in a PEMFC. In addition, there is a lack of data for CO oxidation and adsorption at low temperatures, which is needed for detailed modeling of CO poisoning in PEMFCs. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
质子交换膜燃料电池故障检测研究   总被引:1,自引:0,他引:1  
针对质子交换膜燃料电池(PEMFC)发电系统的故障检测和系统稳定性问题,结合其多传感器特性,采用基于实时PCA的质子交换膜燃料电池故障检测方法,根据燃料电池反应信号数据建立PCA模型,通过窗口过滤方式和遗忘因子算法实时更新模型,并将降维后获得的数据用统计方法进行处理,从而检测出故障。有效地简化了燃料电池系统故障检测的过程,改善了故障检测的实时性,提高了燃料电池系统工作的稳定性和可靠性。  相似文献   

3.
活化能够有效地发挥质子交换膜燃料电池膜电极的性能,"三步活化法"是其中一种比较理想的方法。为了研究"三步活化法"活化质子交换膜燃料电池的机理,利用电化学阻抗谱测试"三步活化法"过程中的膜电极阻抗,并建立等效电路模型拟合所得实验数据。结果表明,"三步活化法"可以有效降低欧姆阻抗、阳极法拉第阻抗、阴极法拉第阻抗以及阴极传质阻抗,这表明"三步活化法"有利于电子、质子、气体与水的传输通道的形成。  相似文献   

4.
In recent years, accurate identification of voltage versus current (V-I) characteristics of proton exchange membrane fuel cell (PEMFC) has attracted significant attention in the literature. However, the main drawback in accurate modeling is the lack of information about the precise values of the model parameters. In this paper, in order to overcome this drawback a grouping-based global harmony search algorithm, named GGHS, is proposed for parameter identification issue. The proposed algorithm attempts to provide an efficient way in which a new harmony can be properly improvised. In order to study the capability of the proposed algorithm, the results obtained by GGHS are compared with those obtained by two versions of harmony search (HS) algorithms, three versions of particle swarm optimization (PSO) algorithms, as well as seeker optimization algorithm (SOA). Simulation results accentuate the superiority of the GGHS over the other methods.  相似文献   

5.
质子交换膜燃料电池(PEMFC)引射器设计通常需经过结构参数计算、计算域建模、网格划分和数值模拟等步骤,并经过多轮迭代得到一个性能较优的设计方案,所需时间成本较高。针对PEMFC引射器,通过Python编程语言将以上功能进行集成,自动计算引射器结构参数,并调用OpenFOAM软件中的blockMesh工具进行计算域建模、网格划分,以及rhoSimpleFoam求解器进行数值仿真验证,形成一套参数化的自动仿真设计工具。研究表明,该工具可显著提高PEMFC引射器设计开发的速度,从而促进汽车工业的发展。  相似文献   

6.
The aim of this study is to investigate the abnormal behavior of cell voltage in a proton exchange membrane fuel cell stack and a mitigation strategy. The proposed strategy is simple and requires only a three‐way solenoid valve to replace the direct way solenoid valve of the original system. It is applied to a proton exchange membrane fuel cell stack with a dead‐ended anode to verify its validity. The behavior of the cell voltages in the stack is discussed in detail, especially the cell reversal process. The results show that the proposed strategy can significantly reduce the severity of hydrogen starvation. And the maximum power of the stack is increased by 10.67%. It is a sudden increase related to cell reversal mitigation. Uneven hydrogen distribution is the cause of low cell voltage and cell reversal. This strategy increases the cell voltage by increasing the hydrogen content in the anode flow channel downstream. It also significantly reduces the fluctuations in cell voltage and improves the uniformity of the cell voltage. This experimental study contributes to mitigate hydrogen starvation in cells of proton exchange membrane fuel cell stacks in application.  相似文献   

7.
为深入研究质子交换膜燃料电池内电荷传递的规律,发展了一个三维的单相流、非等温数学模型,模型考虑了电子在催化层和扩散层、质子在催化层和质子交换膜中的传递。通过计算得到了电池内电位和电流密度的空间分布,分析了不同电极结构参数下电流密度的分布和最终造成的性能差异。结果表明,欧姆电位的下降主要发生在膜相电位,而碳相电位的下降几乎可以忽略不计;电流密度在流道与集电极交界处出现"火焰形"累积效应;改变电池的结构对电池性能影响不大,应结合加工成本和电流密度分布综合考虑。  相似文献   

8.
High temperature proton exchange membrane fuel cells (HT-PEMFC), which operate between 160 °C and 200 °C, can be generally used in portable and stationary power generation applications. In this study, a one-dimensional, semi-empirical, and steady-state model of a HT-PEMFC fed with a gas mixture consisting of hydrogen and carbon monoxide is developed. Some modeling parameters are adjusted using empirical data, which are obtained conducting experiments on a HT-PEMFC for different values of Pt loading and cell temperature. For adjusting these parameters, the total summation of the square of the difference between the cell voltages found using the experimental and theoretical methods is minimized using genetic algorithm. After finding the values of the adjusted parameters, the effects of different cell temperature, Pt loading, phosphoric acid (PA) percentage, and different binders (PBI and PVDF) on the performance of the fuel cell are examined. It was found that, the performance of the fuel cell using PVDF binder exhibited better performance as compared to that using PBI binder.  相似文献   

9.
The metal bipolar plates (BPs) have replaced the graphite BPs in vehicle‐used proton exchange membrane fuel cell (PEMFC) stack because of their high volume power density. To investigate the durability of metal BP stack, this paper performed a durability test of 2000 hours on a 10‐cell metal BP fuel cell stack. The degradations of the average voltage and individual cell voltage in fuel cell stack were analyzed. To investigate the degradation mechanism, the stack was disassembled and the morphologies and compositions of no. 1, no. 5, and no. 10 cells after 2000 hours were characterized by SEM, TEM, and ASS. The results indicated that at 800 mA/cm2, the voltage decay rate is 42.303 μV/hour and the voltage decay percentage of the stack is 14.34% after 2000 hours according to the linearly fitting result. According to the US Department of Energy (DOE) definition of fuel cell stack life, only the voltage decay rate of OCV and the tenth cell is lower than the maximum voltage degradation rates of 10 000 hours. The decreases of homogeneity of stack were the main reason for its performance degradation. Especially for the tenth cell, its performance has almost no drop. The main failure reason of this metal BP stack is structural design rather than metal corrosion. The losses of Pt catalyst and C supporting are the main reason of performance degradation.  相似文献   

10.
A proton exchange membrane fuel cell (PEMFC) cogeneration system that provides high-quality electricity and hot water has been developed. A specially designed thermal management system together with a microcontroller embedded with appropriate control algorithm is integrated into a PEM fuel cell system. The thermal management system does not only control the fuel cell operation temperature but also recover the heat dissipated by FC stack. The dynamic behaviors of thermal and electrical characteristics are presented to verify the stability of the fuel cell cogeneration system. In addition, the reliability of the fuel cell cogeneration system is proved by one-day demonstration that deals with the daily power demand in a typical family. Finally, the effects of external loads on the efficiencies of the fuel cell cogeneration system are examined. Results reveal that the maximum system efficiency was as high as 81% when combining heat and power.  相似文献   

11.
介绍了目前质子交换膜燃料电池(PEMFC)在膜、电极、单电池、电堆或系统等四个结构尺度上的传热传质过程研究;主要讨论了PEMFC内的多组分传输、膜内水管理和多孔电极内的传热、传质过程;认为建立在孔尺度水平的研究方法是深入探讨电池内多孔材料微结构传热传质的有效途径;多维、多尺度模型的建立及其模拟计算能准确反映PEMFC内部的传递过程机理,为进一步优化电池结构和操作条件提供有价值的参考。  相似文献   

12.
质子交换膜燃料电池(PEMFC)与其它燃料电池一样,是利用氧化、还原反应产生电子流的装置。它以氢为燃料、以氧为氧化剂,把化学能直接转化为电能。由于该电池以氢气为燃料,生成的产物是水,对环境造成的污染少。在化石燃料日益短缺及环境污染日益严峻的条件下,燃料电池倍受关注。而近几年发展起来的质子交换膜燃料电池(PEMFC)由于其无污染、发电效率高等特点正受到各国各部门的重视。主要评述了PEMFC的主要用途、工作原理及其实现商业化所面临的几个主要问题。  相似文献   

13.
The number of working points and response speed are two essential characteristics of proton exchange membrane fuel cell (PEMFC). The improper setting of the number of working points and response speed may reduce the life of PEMFC and increase the hydrogen consumption of the vehicle. This paper explores the impact of the response speed as well as the working points of the PEMFC on the hydrogen consumption in the real-system level. In this paper a dynamic model of the PEMFC system is established and verified by experiments. The model is able to reflect the dynamic response process of PEMFC under a series different number of working points and different response speed. Based on the proposed model, the influence of working points and the response speed of PEMFC on the hydrogen consumption in the vehicle under different driving cycles is analyzed and summarized, for the first time, in the open literature. The results highlight that the hydrogen consumption will decreases in both cases that with the increase of working point number and increase of response speed. However, the reduction range of hydrogen consumption trends to smaller and may reach to an optimal level considering the trade-off between the hydrogen saving and the other costs, for example the control cost. Also, with a more complex driving cycle, the working points and response speed have a greater the impact on the hydrogen consumption in the vehicle applications.  相似文献   

14.
温度、压力和湿度对质子交换膜燃料电池性能的影响   总被引:16,自引:0,他引:16  
以Nafion质子交换膜燃料电池(PEMFC)为对象,通过测量电池的电流—电压、电流—功率和电压—时间曲线,研究了温度、压力和湿度等条件对电池性能的影响,同时也考察了电池的能量转换效率及短期运行时的稳定性,得出了电池较佳的工作条件。实验和计算结果表明:在反应温度为72℃、H2和02压力分别为0.2MPa、进气湿度饱和时,电池最大输出功率可达0.7W.cm^-2;在0.3W.cm^-2~0.7W.cm^-2范围内电池能量转换效率为62%—34%;在大电流密度下电池仍能稳定工作。  相似文献   

15.
质子交换膜燃料电池的水热管理   总被引:8,自引:0,他引:8  
律翠萍  叶芳  郭航  马重芳 《节能》2005,(8):6-10
质子交换膜燃料电池电化学反应生成电能、热能和水。质子交换膜燃料电池中水管理与热管理是紧密关联互相耦合的,有效的水热管理对于提高电池的性能和寿命起着关键作用。本文对膜中水的迁移机理及影响水平衡的主要因素进行了分析,对目前较为有效的水管理方法进行了综述。另外,分析了在微重力条件下燃料电池水管理问题的重要性。燃料电池中约有40%~50%的能量耗散为热能,必须采取有效的散热方式及时排除这些热量。本文对质子交换膜燃料电池的温度分布、局部换热系数及散热等燃料电池热管理相关问题进行了分析。  相似文献   

16.
A first principles dynamic model of the physical, chemical, and electrochemical processes at work in a proton exchange membrane fuel cell has been developed. The model solves the dynamic equations that govern the physics, chemistry and electrochemistry for time scales greater than about 10 ms. The dynamic equations are solved for a typical but simplified quasi-three dimensional geometric representation of a single cell repeat unit of a fuel cell stack. The current approach captures spatial and temporal variations in the important physics of heat transfer and water transport in a manner that is simple enough to make the model amenable to PEMFC system simulations and controls development. Comparisons of model results to experimental data indicate that the model can well predict steady state voltage–current relationships as well as the oxygen, water, and nitrogen spatial distribution within the fuel cell. In addition, the model gives dynamic insight into the distribution of current, water flux, species mole fractions, and temperatures within the fuel cell. Finally, a control system test is demonstrated using the simplified dynamic model.  相似文献   

17.
建立了一个三维的数学模型来模拟研究质子交换膜燃料电池,以及流道里流体的流动、阳极氢气和阴极氧气各组分的传递、热量传递、电荷传递、和氧化还原的电化学反应动力学,得到了电池内的组分浓度分布情况、温度场分布情况、以及多孔扩散层孔隙率对电池性能的影响.  相似文献   

18.
Water management is a crucial factor in determining the performance of proton exchange membrane fuel cell (PEMFC) for automotive application. The shell-and-tube water-to-gas membrane humidifier is useful for humidifying the PEMFC due to its good performance. Shell-and-tube water-to-gas membrane humidifiers have liquid water on one side of the tube wall and a dry gas on the other. In order to investigate humidifier performance, a two-dimensional dynamic model of a shell-and-tube water-to-gas membrane humidifier is developed. The model is discretized into three control volumes – shell, tube and membrane – in the cross-sectional direction to resolve the temperature and species concentration of the humidifier. For validation, the dew point temperature of the simulation result is compared with that of experimental data and shows good agreement with only a slight difference. The distribution of humidification characteristics can be captured using the discretization along the air-flow direction. The humidification performance of two different flow configurations, counter and parallel, are compared under various operating conditions and geometric parameters. Finally, the dynamic response of the humidifier at the step-change of various air flow rates is investigated. These results suggest that the model can be used to optimize the inlet flow humidity of a PEMFC.  相似文献   

19.
在对国内外质子交换膜燃料电池测试系统进行广泛调研的基础上,阐述了其系统的基本组成和工作原理,分析比较了一些有代表性系统的特性和优缺点,展望了该系统研发的发展趋势。  相似文献   

20.
The cathode microporous layer (MPL) is fabricated by various multiwall carbon nanotubes (CNTs), and its influence on the performance of a proton exchange membrane fuel cell (PEMFC) is evaluated. Three types of CNT with different dimensions are employed in the experiments, and the conventional MPL made by acetylene black (AB) is also considered for the purpose of comparison. The results show that the employment of CNT as MPL composition indeed may improve fuel cell performance significantly in comparison with the case of AB. The type of CNT with the largest tube diameter and straight cylinder in shape exhibits the highest cell performance. The corresponding optimal CNT loading and polytetrafluoroethylene (PTFE) content in the MPL are also evaluated. Results show that the case of cathode MPL composed of 1.5 mg cm?2 CNT and 20 wt% PTFE exhibits the best performance in all the experimental cases. The present data reveal that the application of CNT for MPL fabrication is beneficial to promote PEMFC performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号