首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
龙娟  周围  吴江华 《通信技术》2007,40(9):31-33
智能天线是TD-SCDMA系统的关键技术之一,其核心为波达方向(Direction of Arrival,DOA)估计和波束形成算法。目前大多数DOA估计算法都是以均匀线阵为基础,而TD-SCDMA采用的是8阵元的圆阵列天线,因此,文中采用空间预处理技术,将圆阵虚拟到均匀线阵,再用ESPRIT算法进行DOA估计,最后通过仿真验证了该算法的可行性。  相似文献   

2.
提出了一种人脸姿态估计的新方法。根据三维扫描预先生成一个通用的模型,基于三维形态模型采用粒子群优化算法对人脸姿态进行初步估计,由特征点检测确定姿态大致范围,再在初步估计的结果上进行修正迭代,从而对人脸姿态进行精确估计。实验表明,该方法在简化数学运算的基础上,具有较好的估计效果,平衡了计算复杂度与结果精确度。  相似文献   

3.
一种热红外人脸分割的新方法   总被引:1,自引:0,他引:1  
针对热红外人脸的边缘和细节特征模糊、对比度低、人脸和背景温度分布不同等特点,提出一种新的图像分割方法.该方法使用灰度投影粗定位人脸,使用模糊连接度分割背景和确定人眼眉毛的位置,根据眉毛的中心精确定位和归一化人脸.实验结果表明,该方法消除了背景干扰,保留了更多的人脸信息,能够有效解决热红外人脸图像的定位和分割问题.  相似文献   

4.
5.
本文提出了一种适用于DS-CDMA扩频通信系统的信号波达方向(DOA)估计方法。理论分析和仿真结果表明,该方法能实现用户数远大于自适应天线阵的阵元数的CDMA系统信号波达方向估计。与谱估计法和MUSIC法不同,该方法不需要确知信号源数,且空间分辨率高,计算量小,有较强的实用性。  相似文献   

6.
针对人脸光照、遮挡、身份、表情等因素变化的人脸姿态估计难题,结合稀疏表示分类(SRC)方法的优秀识别性能,对SRC理论进行了深入分析,并将其应用于人脸姿态分类.为了解决姿态估计中人脸光照、噪声和遮挡变化问题,将人脸姿态离散化为不同的子空间,每个子空间对应一个类别,据此,提出基于字典学习与稀疏约束的人脸姿态识别方法.通过在公开的XJTU和PIE人脸库上实验表明:所研究的方法对人脸光照、噪声和遮挡变化具有鲁棒性.  相似文献   

7.
王江  李春生 《舰船电子对抗》2009,32(4):48-50,62
最小均方(LMS)算法可用来进行时延估计。当算法收敛后,可以根据滤波器权系数最大值的位置估计整数倍采样周期的时延。为了估计非整数倍采样周期的时延,常用SINC函数插值法和约束自适应方法。利用SINC函数的特点和拉格朗日条件极值,对自适应时延估计的滤波器权系数做了改进,提出了新的约束自适应时延估计方法。仿真实验表明,提出方法的性能优于传统的自适应时延估计算法。  相似文献   

8.
本文提出了一种解析的基于旋转矩阵估计的高分辨波达方向估计算法.为了充分利用空时信息以提高算法的估计性能,利用传感器阵列接收数据相关矩阵构建既包含旋转矩阵信息又具有可对角化结构的目标矩阵组.通过一系列矩阵变换,将复数域普通目标矩阵组转化为实数域对称目标矩阵组,以利用ACDC算法实现目标矩阵组的联合对角化并求得对角矩阵,继而求取旋转矩阵并挖掘波达角度信息,实现了波达方向估计.仿真结果表明,与其他现存的经典算法相比,所提算法具有更强的分辨能力及更准确的估计性能.  相似文献   

9.
一种估计宽带信号源数目的新方法   总被引:1,自引:0,他引:1  
信号源数目估计是波达方向(DOA)估计的基础。基于噪声特征值的统计特性,文章在宽带信号条件下,基于各个频率点下的阵列采样协方差矩阵的噪声特征值在平面直角坐标系中几乎处于同一条直线上这一统计特性,提出了一种新的估计宽带信号源数目的方法,该方法简单且易于实现。最后通过计算机仿真验证了此方法的有效性和优越性。  相似文献   

10.
提出了一种应用于移动自主网中节点定位的波达方向(Direction of Arrival,DOA)估计新方法,以满足移动自主网对节点定位机制的高精度和低复杂度的要求。利用牛顿法将延迟相加法和求根多重信号分类算法(Root-MUSIC)进行联合估计,定位过程分为2个阶段:采用延迟相加法进行实时粗略DOA估计;采用Root-MUSIC进行精准定位。将该方法实现于软件无线电(SDR)系统,综合了延迟相加法低复杂度和Root-MUSIC高估计精度的优点。Matlab仿真实验结果证明了该方法以较低的复杂度获得近似于单独采用Root-MUSIC所达到的高精度,解决了现有方法难以同时达到高精度和低复杂度的问题。  相似文献   

11.
针对深度相机运动中的位姿估计问题,提出了一种无需迭代的估计方法。首先,在二维图像上应用图像特征点提取和描述方法,完成不同视点的初始匹配。其次,选择初始匹配度量距离最小的2个特征点作为种子点。以三维空间中欧式距离与坐标系的建立无关为准则,对初始匹配进行筛选。剔除误匹配点对,进而计算运动位姿参数。最后,采用nyuv2图像数据库进行实验,验证了本文算法的可行性和正确性。实验结果表明:与传统算法相比,该方法计算效率平均提高了8倍以上,特别适用于大型场景中的同步定位和地图构建SLAM(Simultaneous Localization and Mapping)问题。  相似文献   

12.
计算机视觉中一般是利用优化技术最小化目标函数来估计位姿,目标函数通常是由图像平面上特征点重投影误差构成,并且假设测量噪声是各向同性且独立同分布的高斯噪声,所得到的位姿是在该假设条件下的极大似然最优估计。然而,在实际应用中这种假设并不总是成立,测量噪声通常是各向异性且非独立同分布,而且常常具有很强的方向性。为此,本文提出了一种新的特征点位姿估计方法,首先对特征点的方向不确定性建模,然后将方向不确定性融入到重投影误差中,构造基于不确定性加权误差的新目标函数,最后利用Levenberg-Marquardt算法优化目标函数求解位姿。大量实验结果表明,本方法可以适应不同程度的方向不确定性,精度优于现有迭代方法。而且随着不确定性的增加,位姿解的精度并没有明显变差。  相似文献   

13.
Recently convolutional neural networks (CNNs) have been employed to address the problem of hand pose estimation. In this work, we introduce an end-to-end deep architecture that can accurately estimate hand pose through the joint use of model-based and fine-tuning methods. In the model-based stage, we make use of the prior information in hand model geometry to ensure the geometric validity of the estimated poses. Next, we introduce a fine-tuning approach that learns to refine the errors between the model and observed hand. Our approach is validated on three challenging public datasets and achieves state-of-the-art performance.  相似文献   

14.
Hand pose estimation plays an important role in human–computer interaction and augmented reality. Regressing the joints coordinates is a difficult task due to the flexibility of the joint, self-occlusion and so on. In this paper, we propose a novel and simple hierarchical neural network for hand pose estimation. The hand joint coordinates are divided into six parts and each part is regressed in sequence with this hierarchical architecture. This can divide the complex task of regressing all hand joints coordinates into several sub-tasks which can make the estimation more accurate. When regress the joint coordinates of one part, the features of other parts may bring negative influence to this part due to the similarity among the fingers, so we use an interference cancellation operation in our hierarchical architecture. At the time the joint coordinates of one part are regressed, the corresponding features will be removed from the hand global feature to eliminate the interference of this part. The obtained features will be used as input for regressing the joints coordinates of the next part. The ablation study verifies the effectiveness of our hierarchical architecture. The experimental results demonstrate that our method can achieve state-of-the-art or comparable results relative to existing methods on four public hand pose datasets.  相似文献   

15.
Hand pose estimation is a challenging task owing to the high flexibility and serious self-occlusion of the hand. Therefore, an optimized convolutional pose machine (OCPM) was proposed in this study to estimate the hand pose accurately. Traditional CPMs have two components, a feature extraction module and an information processing module. First, the backbone network of the feature extraction module was replaced by Resnet-18 to reduce the number of network parameters. Furthermore, an attention module called the convolutional block attention module (CBAM) is embedded into the feature extraction module to enhance the information extraction. Then, the structure of the information processing module was adjusted through a residual connection in each stage that consist of a series of continuous convolutional operations, and requires a dense fusion between the output from all previous stages and the feature extraction module. The experimental results on two public datasets showed that the OCPM network achieved excellent performance.  相似文献   

16.
Head pose is an important cue in computer vision when using facial information. Over the last three decades, methods for head pose estimation have received increasing attention due to their application in several image analysis tasks. Although many techniques have been developed in the years to address this issue, head pose estimation remains an open research topic, particularly in unconstrained environments. In this paper, we present a comprehensive survey focusing on methods under both constrained and unconstrained conditions, focusing on the literature from the last decade. This work illustrates advantages and disadvantages of existing algorithms, starting from seminal contributions to head pose estimation, and ending with the more recent approaches which adopted deep learning frameworks. Several performance comparison are provided. This paper also states promising directions for future research on the topic.  相似文献   

17.
Graph convolutional networks (GCNs) have proven to be an effective approach for 3D human pose estimation. By naturally modeling the skeleton structure of the human body as a graph, GCNs are able to capture the spatial relationships between joints and learn an efficient representation of the underlying pose. However, most GCN-based methods use a shared weight matrix, making it challenging to accurately capture the different and complex relationships between joints. In this paper, we introduce an iterative graph filtering framework for 3D human pose estimation, which aims to predict the 3D joint positions given a set of 2D joint locations in images. Our approach builds upon the idea of iteratively solving graph filtering with Laplacian regularization via the Gauss–Seidel iterative method. Motivated by this iterative solution, we design a Gauss–Seidel network (GS-Net) architecture, which makes use of weight and adjacency modulation, skip connection, and a pure convolutional block with layer normalization. Adjacency modulation facilitates the learning of edges that go beyond the inherent connections of body joints, resulting in an adjusted graph structure that reflects the human skeleton, while skip connections help maintain crucial information from the input layer’s initial features as the network depth increases. We evaluate our proposed model on two standard benchmark datasets, and compare it with a comprehensive set of strong baseline methods for 3D human pose estimation. Our experimental results demonstrate that our approach outperforms the baseline methods on both datasets, achieving state-of-the-art performance. Furthermore, we conduct ablation studies to analyze the contributions of different components of our model architecture and show that the skip connection and adjacency modulation help improve the model performance.  相似文献   

18.
人体姿态估计主要依赖于视觉图像信息捕获关节点从而获得肢体和躯干的全局姿态信息。目前,基于可见光的深度学习方法具备较高的检测精确度,但隐私泄露的风险限制了其实际应用。同成本的红外探测器虽更能突出人体目标,但因成像分辨力较低,图像质量差,导致检测精确度下降。受视觉Transformer的启发,本文引入MobileViT-FPN提取人体关键点,利用MobileViT捕捉局部关节点特征和全局关节点特征关系,然后使用固定模式噪声(FPN)在多尺度上聚合这些表征信息,结合改进的OpenPose对关键点进行聚类,输出估计结果。在关键点级联阶段,注意力机制使模型自适应关注感兴趣区域,增强对遮挡部位的恢复。实验表明,该方法可以实时检测变化尺度和部分遮挡的红外人体目标,准确描绘人体姿态。  相似文献   

19.
This work is about solving a challenging problem of estimating the full 3D hand pose when a hand interacts with an unknown object. Compared to isolated single hand pose estimation, occlusion and interference induced by the manipulated object and the clutter background bring more difficulties for this task. Our proposed Multi-Level Fusion Net focuses on extracting more effective features to overcome these disadvantages by multi-level fusion design with a new end-to-end Convolutional Neural Network (CNN) framework. It takes cropped RGBD data from a single RGBD camera at free viewpoint as input without requiring additional hand–object pre-segmentation and object or hand pre-modeling. Through extensive evaluations on public hand–object interaction dataset, we demonstrate the state-of-the-art performance of our method.  相似文献   

20.
The study of 3D hand pose estimation from a single depth image is regarded as a detection-based or regression-based problem among most of the existing deep learning-based methods, and this approach does not fully exploit the geometry of the hand, such as its structural and physical constraints. To overcome these weaknesses, we design a network with three simple parallel branches that correspond to the three functional parts of the hand. This observation is motivated by the biological viewpoint that each finger plays a different role in performing grasping and manipulation. In each branch, we perform a more detailed regression in two stages – top-down joint location regression followed by bottom-up hand pose regression – which fully exploits both the local and global structure of a hand. Finally, we further make use of the hand structure and physical constraints to refine each joint by its auxiliary points. The proposed network is a unified structure and function model that is more appropriate for hand pose estimation. Our system does not require pose pre-processing or feedback since it can directly perform training and predicting from end-to-end. The experimental results on three public datasets demonstrate that the proposed system achieves performance comparable to state-of-the-art methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号