首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
用内外靶配置的多弧-磁控溅射技术在单晶硅和硬质合金上制备Ti-Si-N纳米复合涂层,研究衬底偏压和Si靶溅射电流对涂层结构和力学性能的影响,经过实验参数优化,在偏压为-150 V、Si靶电流为15 A的沉积条件下,得到Si的原子分数为6.3%的Ti-Si-N纳米复合涂层。X射线衍射、X射线光电子能谱和透射电镜分析表明,涂层中含有晶态TiN和非晶Si3N4,纳米尺寸的TiN颗粒镶嵌在非晶Si3N4基体结构中。纳米硬度计测试表明涂层的显微硬度为40 GPa,摩擦学实验表明其摩擦因数为0.89,可满足Ti-Si-N纳米复合涂层的工业化应用要求。  相似文献   

2.
利用C2H2和Si靶,通过等离子体增强化学气相沉积(plasmaenhancedchemicalvapordeposition,PECVD)和磁控溅射法,在Ti-6Al-4V(TC4)合金表面沉积类金刚石(diamond-likecarbon,DLC)膜层和不同Si含量的Si-DLC膜层。利用拉曼光谱和X射线光电子能谱分析膜层中的键合含量和结构无序性;采用纳米压痕和纳米划痕法测试TC4合金及其膜层试样的力学性能;使用HT-1000高温摩擦磨损测试仪和光学轮廓仪测试TC4合金及其膜层试样的摩擦磨损性能。结果表明:无论是否含Si元素,DLC膜层都能够有效提高TC4基体表面硬度,其中沉积纯DLC膜层后TC4基体的硬度相比无涂层提升了2.4倍,提升率最大;纯DLC和Si的摩尔分数分别为1.79%和3.06%的2种Si-DLC膜层,都可使TC4基体的表面摩擦因数从无涂层的0.64降低至0.1左右,磨损率从无涂层的476.5×10-7 mm3/(N·m)降低至0.5×10-7 mm  相似文献   

3.
硬质合金刀具涂层技术的研究进展   总被引:5,自引:0,他引:5  
傅小明  吴晓东 《江西冶金》2004,24(2):32-36,45
随着涂层技术的进步,使得硬质合金刀具涂层方法在不断地进步,日趋复杂化和多样化;硬质合金刀具涂层种类也在不断地更新,从单一的化合物涂层朝着多元复杂化合物涂层发展,涂层层数也从几层到十几层发展。本文简要地综述了目前国内外涂层硬质合金刀具的特点,高温化学气相沉积涂层(HTCVD或简称CVD)、物理气相沉积涂层(PVD)、等离子化学气相沉积涂层(PCVD)、中温化学气相沉积涂层(MTCVD)和离子辅助物理气相沉积涂层(IBVD)这5种硬质合金刀具涂层方法的机理、特点和缺点,以及单渗层涂层硬质合金、多渗层涂层硬质合金和新渗层涂层硬质合金这3种硬质合金刀具涂层的特点和应用。  相似文献   

4.
(Ti,Al)N单层和TiN/(Ti,Al)N多层涂层的物理及力学性能研究   总被引:1,自引:0,他引:1  
借助EPMA、XRD、SEM、纳米压痕、EDX、RockwellA压痕、强度测试和切削实验研究了采用磁控溅射法在硬质合金基体上沉积的(Ti,AI)N单层和TIN/(Ti,AI)N多层涂层的物理和力学性能。研究结果表明:两种涂层均与基体结合紧密,(Ti,AI)N为面心立方结构;TIN/(Ti,AI)N多层涂层具有更高的硬度、更低的脆性和更好的切削性能。  相似文献   

5.
Si含量对TiAlSiN纳米复合涂层的微观结构和力学性能的影响   总被引:3,自引:0,他引:3  
采用不同Si含量的TiAlSi复合靶,在Si基底片上用射频磁控溅射工艺沉积了TiAlSiN纳米复合涂层,采用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)和纳米压痕技术研究了Si含量对TiAlSiN涂层的微观结构和力学性能的影响.结果表明:TiAlSiN涂层内部形成了Si3N4界面相包裹TiAlN纳米等轴晶粒的纳米复合结构.随着Si含量的增加,TiAlSiN涂层的结晶程度先增加后降低,涂层内部的晶粒尺寸先减小后趋于平稳,涂层的力学性能先升高后降低.当Si与TiAl原子比为3∶22时获得的最高硬度和弹性模量分别为37.1GPa和357.3 GPa.  相似文献   

6.
吴龙  马捷  魏建忠  李洪义   《钛工业进展》2020,37(5):18-22
利用磁控溅射(PVD)、化学气相沉积(CVD)以及热扩散渗硅方法在TC4钛合金表面制备WSi_2/W5Si_3复合涂层。采用X射线衍射仪、扫描电镜、能谱仪对复合涂层的结构、组织形貌以及微区化学成分进行分析;对复合涂层显微硬度、附着力以及耐磨性进行测试。结果表明:WSi_2/W5Si_3复合涂层的WSi_2层和W_5Si_3层厚度分别为20、56μm,显微硬度平均值分别为10.70和8.32 GPa; WSi_2/W_5Si_3复合涂层与基体结合力为171.6 N; WSi_2/W5Si_3复合涂层表面摩擦因数为0.75,磨损率为1.184×10~(-6)mm~3·mm~(-1)。在TC4钛合金表面制备的WSi_2/W_5Si_3复合涂层结构均匀致密,与基体结合良好。  相似文献   

7.
沉积温度对SiC涂层微观结构及组成的影响   总被引:4,自引:0,他引:4  
利用MTS-H2-Ar体系,用化学气相沉积法(CVD)在SiC基体材料表面沉积SiC涂层。用X射线衍射仪和扫描电镜分析涂层的晶体结构和表面形貌。研究温度对涂层的物相组成、微观结构和沉积速率的影响。结果表明:在1100~1400℃范围内,沉积产物均为单一的β-SiC结晶相;随温度升高,SiC晶粒尺寸增大,1400℃时择优生长由(110)晶面转变为(220)晶面;涂层形貌对温度十分敏感,在1200℃温度下沉积的涂层最为致密,且具有最大沉积速率,是制备SiC涂层的最佳温度。  相似文献   

8.
金属钨涂层制备工艺的研究进展   总被引:2,自引:0,他引:2  
金属钨属于难熔金属,具有高的强度和硬度,同时具有良好的化学稳定性,不易受到腐蚀,但其昂贵的价格及难加工特性限制了其应用,因此,用金属钨作为涂层材料来改善基体材料的性能,引起了众多研究者的关注。该文综述纯金属钨涂层的几种重要制备方法,包括:熔盐电镀法,等离子喷涂法,爆炸喷涂法,气相沉积法等。等离子喷涂是钨涂层制备中最为成熟的1种方法,基体材料不受限制,涂层厚度容易控制。熔盐电镀法能够通过电化学反应从化合物中一步获得厚度均匀的金属钨涂层,并且可避免引入氧和碳等杂质。化学气相沉积法获得的钨涂层致密度高;物理气相沉积法可以在任意基材上获得钨涂层。同时介绍这些方法各自的技术特点和目前的研究现状,并对金属钨涂层的制备方法进行展望。  相似文献   

9.
采用化学气相沉积(CVD)方法在硬质合金刀片上制备了三种B的原子分数分别为10.1%,26.8%,52.0%的TiBN涂层,系统地研究了B的原子分数对于涂层形貌、力学性能和摩擦性能的影响。X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)检测结果表明,在B的原子分数低时,涂层以TiN相为主,伴有六方TiB2相和非晶BN相。随着B的原子分数的上升,TiN相减少,涂层以TiB2相为主,涂层断口也由无定形转变为柱状晶。B的原子分数的增加也对涂层硬度和摩擦性能有着明显的影响,三种涂层的硬度分别为37.8±1.6,39.7±0.8和41.7±2.9 GPa,摩擦系数也从0.511增加到0.705。B的原子分数达到52%的涂层因为其高硬度而有着最好的耐磨性,涂层磨损率为最低的49.4×10?8 mm3/(N·m),是几种成分中力学性能与摩擦性能最好的涂层。  相似文献   

10.
对取向硅钢高张力涂层开发的技术原理和进展情况进行了介绍,重点对化学气相沉积法和溶胶—凝胶法制备取向硅钢高张力涂层技术难点和商业化前景进行了论述。化学气相沉积法和溶胶—凝胶法成功解决了在镜面取向硅钢表面制备同时具有良好附着性和高张力效果涂层的技术难题,近年来受到了钢铁企业的重视和广泛的研究。化学气相沉积法制备TiN涂层和溶胶—凝胶法制备B2O3-Al2O3涂层工艺在镜面取向硅钢产品上具有商业化应用前景,代表了未来高张力涂层的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号