首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
运用超临界CO_2发泡技术制备了聚丁烯(PB)泡沫材料,并考察了不同饱和温度与压力对PB发泡材料的发泡倍率、密度以及包括平均泡孔尺寸、泡孔密度、泡孔壁厚度在内的泡孔结构的影响。并引入聚苯乙烯(PS)微球制备双泡孔层PB发泡材料,研究了PS微球的表面性能对PB发泡材料泡孔结构的影响,结果表明,经硅烷偶联剂表面处理的PS微球可以提高PB发泡材料的可发性,在添加量为1.5%时与未加入PS微球的发泡材料相比可使发泡材料密度降低38%,泡孔密度增加4个数量级,平均泡孔直径减小4倍。  相似文献   

2.
CO2/PS等静态微孔发泡研究   总被引:2,自引:0,他引:2  
对CO2与PS在高压设备中进行等静压处理的微孔发泡进行了研究。结果表明,改变CO2的压力可以控制发泡的泡孔密度和泡孔大小。增加等静压的压力和PS中OC2的浓度,可以提高泡孔的密度,减小泡孔的直径。  相似文献   

3.
以超临界CO_2为发泡剂,采用釜压法在不同发泡工艺条件下制备了聚苯乙烯(PS)发泡试样,通过扫描电子显微镜对PS发泡试样的泡孔形貌进行了表征,探讨了不同发泡工艺对PS发泡试样发泡性能的影响。结果表明,随发泡温度的升高,PS发泡试样泡孔尺寸增大,泡孔密度下降,而泡沫密度呈现先降低后升高的趋势,发泡倍率与此相反;增大保压时间和保压压力,可提高试样的发泡效果。当发泡温度为136℃,保压压力为20 MPa,保压时间为4 h时,PS发泡试样的发泡效果最好,其泡沫密度为0.043 g/cm~3,发泡倍率为24.4,泡孔尺寸为59.8μm,泡孔密度为6.20×107个/cm~3。  相似文献   

4.
采用二氧化碳(CO2)与乙醇(EtOH)组合物理发泡剂对聚苯乙烯(PS)进行连续挤出发泡,并探讨了2种发 泡剂组成比率对PS挤出发泡板材发泡倍率及泡孔形貌的影响。通过真密度测定仪和扫描电镜对发泡样品的密度、 发泡倍率和泡孔形态进行测试。结果表明,在组合发泡剂连续挤出PS发泡过程中,提高CO2的用量更有利于增加泡 孔成核数量和减小泡孔尺寸,而提高EtOH用量可以增大泡孔尺寸,提高发泡剂总量,有利于降低泡沫密度。  相似文献   

5.
采用快速升温法,在相对较低的压力下制备聚碳酸酯(PC)/聚苯乙烯(PS)共混物的微孔发泡材料.获得的PC/PS共混物发泡材料的平均泡孔直径为4.3μm,泡孔密度为8.89 × 10~9个/cm~3,而在相同条件下制得的PC和PS发泡材料的平均泡孔直径分别为28.6μm和143.8 0μm,泡孔密度分别为2.23×10~7个/cm~3和3.6×10~5个/cm~3.并研究PC、PS和PC/PS共混物的CO_2吸附行为以及PC/PS共混物在不同温度下的泡孔形态,发现泡孔首先在PS相中成核并生长.  相似文献   

6.
孙娇  何亚东  李庆春  闫宝瑞  信春玲 《塑料》2012,41(5):100-102
采用CO2和乙醇作为复合发泡剂,运用DOE(实验设计)方法研究了发泡温度和发泡压力对PS发泡制品性能的影响,包括发泡剂在PS中的吸附量、发泡制品的表观密度、泡孔直径和泡孔密度。根据DOE结果确定了实验区间内的最佳工艺条件。  相似文献   

7.
以聚苯乙烯(PS),PS/聚乙烯(PS/PE)共混体系和PS/纳米CaCO3(PS/nano-CaCO3)复合体系为研究对象,以超临界CO2为发泡剂,选择典型工艺条件开展了发泡实验,采用扫描电子显微镜(SEM)观察泡孔结构,比较分析了不同工艺条件下的发泡行为,为利用PS,PS/PE共混体系和PS/nano-CaCO3复合体系提供研究基础。研究结果表明,PS具有较好的成孔性能,在发泡压力为22 MPa、发泡温度为80℃和饱和时间为2 h时,可制得泡孔孔径为(11.19±2.12)μm、泡孔密度为5.31×107个/cm3、发泡倍率2.64的微孔发泡材料。与PS相比,在相同工艺条件下,当添加PE的质量分数为10%时,PS/PE共混体系的泡孔孔径显著减小,泡孔密度有所提高,可通过调节工艺条件调整泡孔形貌;添加质量分数为5%经硅烷偶联剂表面改性的nano-CaCO3,可促进PS/nano-CaCO3复合体系的泡孔成核,改善其泡孔形态,增加泡孔密度,减小泡孔孔径。  相似文献   

8.
以超临界CO_2为发泡剂,使用单螺杆挤出发泡机制备了微发泡PVC发泡板材。研究了口模压力对微发泡PVC板材泡孔结构、力学性能及制品密度的影响。研究发现:增加口模压力有利于增加泡孔密度,提高PVC发泡板材的力学性能,而发泡制品密度则随压力的升高先降低后增加。  相似文献   

9.
许红飞  黄汉雄  王建康 《塑料》2008,37(2):14-18
共混改性是改善聚丙烯(PP)发泡性能的一种有效方法.文章以PP/聚苯乙烯(PS)共混体系为研究对象,采用自制的高压釜装置进行发泡,并用扫描电镜观察发泡样品的泡孔结构.通过比较泡孔形态、泡孔密度和泡孔直径等,分析了PP/PS共混物组份比对泡孔结构的影响.结果显示:在PP中加入PS可以改善泡孔结构;随着PS含量的增加,泡孔平均直径逐渐增大,泡孔密度逐渐减小;PS分散相分布较均匀时,更有利于产生均匀分布的泡孔结构.  相似文献   

10.
应用超临界CO_2间歇发泡方法研究了温度、压力以及不同发泡工艺对超高分子量聚乙烯(UHMWPE)发泡的影响。结果表明:合适的饱和温度可以提高发泡倍率,减小泡孔尺寸,增加泡孔密度;发泡倍率和泡孔密度与饱和压力成正相关;对比不同工艺条件下的发泡结构与尺寸,得出正向发泡的泡孔尺寸小、泡孔密度高,而逆向发泡的泡孔尺寸大,但发泡倍率高。DSC结果表明:正向发泡的结晶度较高,发泡时异相成核数量增加,从而使泡孔尺寸减小、泡孔数量增加。比较正向和逆向发泡相同发泡倍率下的泡沫压缩性能,发现逆向发泡泡沫的弹性模量大于正向发泡泡沫。  相似文献   

11.
To obtain cellular with small cell diameter, to control cell structure and to improve impact strength of foaming materials, the quick-heating method was applied for foaming polystyrene (PS) using supercritical CO2 (Sc-CO2) as physical blowing agent. Then, changes of cell structure and impact strength in microcellular foamed PS materials under constrained conditions were studied. The effects of foaming processing parameters, such as foaming temperature, saturation pressure and foaming time on the cell structure and impact strength of foamed PS in the constrained conditions were studied. The results showed that the Sc-CO2 solubility and nucleation density in the constrained conditions were not influenced compared with those under free foaming conditions. However, cells in constrained foaming process are mostly circular and independent with thick cell walls; the phenomenon of cell coalescence and collapse was effectively eliminated under constrained conditions. In addition, cell diameters in constrained foaming process decrease with increase in foaming temperature and increase with increase in the foaming time. Compared with that in free foaming conditions, the cell growth was restrained dramatically under constrained conditions which resulted in smaller cell diameter. Moreover, higher impact strength could be obtained for foamed PS as foaming time was prolonged, foaming temperature was increased or saturation pressure was enhanced.  相似文献   

12.
发泡工艺对超临界CO2/PP微孔发泡泡孔形态的影响   总被引:1,自引:0,他引:1  
研究了超临界CO2/PP微孔发泡过程中发泡温度和饱和压力对结晶性聚合物PP泡孔形态的影响。结果表明,温度对泡孔形态影响很大,温度升高,熔体黏度和表面张力降低,泡孔变大,泡孔密度减小。与发泡温度相比,CO2饱和压力对泡孔结构的影响较小。压力太低,CO2的溶解度小,泡孔壁太厚,泡孔分布不均匀。随着压力升高,CO2的溶解度增加,熔体黏度减小,所以泡孔直径和泡孔密度都增加,泡孔壁变薄。  相似文献   

13.
聚丙烯及聚苯乙烯发泡体系熔体密度的研究   总被引:3,自引:3,他引:0  
通过高压毛细管流变仪测量聚丙烯发泡体系的PVT关系,得到一定压力和温度下聚丙烯发泡体系的熔体密度,用于分析发泡体系的毛细管流变特性。与聚苯乙烯和高冲击强度聚苯乙烯发泡体系的熔体密度进行了对比,研究并分析了温度、压力、发泡剂及成核剂含量对发泡体系熔体密度的影响。结果表明:发泡体系的熔体密度均随压力的增大而提高,随温度的升高而降低;在发泡气体的临界压力处,发泡体系的熔体密度产生突变;高压下,发泡剂与成核剂含量对熔体密度的影响很小。  相似文献   

14.
以超临界CO2为发泡剂,用动态发泡实验装置制备了PS和PVC微孔塑料,通过扫描电镜照片观察和研究了振动作用对PS和PVC微孔塑料泡孔结构的影响。结果表明,当剪切速率较低时,在PS发泡过程中施加较弱的振动作用即可显著提高泡孔密度,减小泡孔直径;而在PVC发泡过程中,只有施加相对较强的振动作用才能达到同样的效果。当剪切速率较高时,不论何种发泡体系,施加较弱的振动作用可以改善泡孔的形态;而施加较强的振动作用可能会产生较大的剪切热和脉动剪切应力,从而破坏泡沫的微孔结构。  相似文献   

15.
超临界CO2发泡聚丙烯挤出工艺研究   总被引:2,自引:0,他引:2  
通过对普通等规聚丙烯(PP)共混改性,实现PP的超临界CO2挤出发泡成型。考察了熔体温度、机头压力和CO2浓度对改性PP发泡过程和泡孔结构的影响。采用优化的工艺参数制备出发泡倍率高、泡孔形态完整的改性PP发泡材料。  相似文献   

16.
以超临界CO2为发泡剂,采用质量衰减法测试发泡剂在聚苯醚(PPO)/聚苯乙烯(PS)中的溶解扩散性,在静态条件下系统研究了工艺参数及PPO/PS组成对CO2溶解度与扩散系数的影响,建立了温度、压力及PPO含量与CO2溶解度的定量关系。结果表明,CO2在PPO/PS中的溶解度随着PPO含量的增加而增加,随着压力的增加和温度的降低而增大;扩散系数随着PPO含量的增加而减小,随着温度的升高和饱和压力的增大而增大。  相似文献   

17.
在自行研制的超临界流体CO2挤出发泡实验装置上研究了二叔丁基过氧化物(DTBP)对聚苯乙烯(PS)/超临界流体CO2挤出发泡的影响。结果表明,当DTBP的含量大于0.5 %时,PS的重均相对分子质量急剧下降,发生剧烈降解,使PS的熔体黏度急剧下降。在机头温度为112 ℃,机头压力为4 MPa,DTBP的含量小于0.3 %时,挤塑聚苯乙烯泡沫(XPS)的表观密度下降幅度较大;当其含量大于0.3 %时,下降趋势减缓。DTBP的加入使XPS的弹性模量、压缩强度和弯曲强度增大,弯曲模量降低。  相似文献   

18.
Based on the existence of the pores in foamed polystyrene (PS), foamed‐non‐Fickian diffusion (FNFD) model was proposed, for the first time, to regress the desorption data obtained by gravimetric method. Results showed that FNFD model could accurately describe the diffusion behavior of CO2 out of foamed PS, and well predict the solubility of CO2 in foamed PS. The characterization of scanning electron microscopy indicated that there were abundant pores in the foamed PS, and the pores store most of CO2, which would diffuse in the pores, adsorb to the wall of the pores, penetrate across walls of the pores, diffuse in the matrix of PS, and desorb out of PS. The mass of CO2 in the pores of foamed PS was expressed as a function of foaming pressure and temperature according to foaming kinetics. Results showed that the values calculated by this function agreed well with the values obtained from the FNFD model. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45645.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号