首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Copper-ceria sheets catalysts with different loadings of copper(2 wt.%, 5 wt.% and 10 wt.%) supported on ceria nanosheets were synthesized via a depositioneprecipitation(DP) method. The prepared catalysts were systematically characterized with various structural and textural detections including X-ray diffraction(XRD), Raman spectra, transmission electron microscopy(TEM), X-ray absorption fine structure(XAFS), and temperature-programmed reduction by hydrogen(H_2-TPR), and tested for the CO oxidation reaction. Notably, the sample containing 5 wt.% of Cu exhibited the best catalytic performance as a result of the highest number of active CuO species on the catalyst surface. Further increase of copper content strongly affects the dispersion of copper and thus leads to the formation of less active bulk CuO phase, which was verified by XRD and H_2-TPR analysis. Moreover, on the basis of in-situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS) results, the surface Cu~+ species, which are derived from the reduction of Cu~(2+), are likely to play a crucial role in the catalyzing CO oxidation.Consequently, the superior catalytic performance of the copper-ceria sheets is mainly attributed to the highly dispersed CuO_x cluster rather than Cu-[O_x]-Ce structure, while the bulk CuO phase is adverse to the catalytic activity of CO oxidation.  相似文献   

2.
Codoping approach is an appealing strategy to further improve the catalytic activity of Ce-based catalysts. In the present study,Mn and/or Cu doped ceria solid solutions MnxCuyCe_(1-x-y)O_2,Cu_xCe_(1-x)O_2,Mn_xCe_(1-x)O_2 and pure CeO_2 were prepared by CTAB-assisted hydrothermal method for CO oxidation.XRD, SEM, EDS, BET, Raman, H2-TPR, XPS and in situ DRIFTS techniques were carried out to study the physicochemical properties and to correlate them to the activity. The doped samples maintain the cubic fluorite structure of CeO_2 with high crystallinity and small crystallite size, forming Ce-based solid solutions. The obtained catalysts have large mesoporous structure with average pore size of 10-14 nm. The doped transition metal enhances the oxygen vacancies and improves reducibility of the solids. The synergistic interaction of Mn and Cu codoping induces mo re oxygen vacancies, pro moting the increase of surface adsorbed oxygen and the transfer of bulk oxygen of catalyst, thereby enhancing the catalytic activity for CO oxidation. Besides, the decomposition rate of the carbonate species which is derived from in situ DRIFTS for each catalyst can provide a measure to evaluate its catalytic activity of CO oxidation.  相似文献   

3.
Transference of CuO species and thermal solid-solid interaction in CuO/CeO2-Al2O3 catalyst prepared by an impregnation method were characterized by in-situ XRD, Raman spectroscopy and H2-TPR techniques. For the catalyst calcined at 300℃, two kinds of CuO species coexist on the surface, that is, highly dispersed and bulk CuO crystalline phase. Four kinds of CuO species are present for the catalyst calcined at 600 ℃, : (1) highly dispersed CuO, (2) bulk CuO on the surface, (3) bulk CuO in the internal layer of CeO2, and (4) CuAl2O4 formed from CuO-Al2O3 interaction. For the catalyst calcined at 800 ℃,C, besides very little highly dispersed and bulk CuO on the surface, most of the CuO has transferred into the internal layer of CeO2 and the mass of CuAl2O4 are increased. At 900 ℃,, all of CuO has diffused into the internal layer of CeO2 and formed CuAl2O4. The results show that the distribution of CuO species in the catalysts depends on the calcination temperature; the different CuO species can be effectively confirmed by in-situ XRD, Raman spectroscopy and H2-TPR techniques.  相似文献   

4.
Water-gas shift(WGS)is a critical step in fuelprocessors for preli minary COclean-up and additionalhydrogen generation prior to the CO clean-up stage,which opened up new potential applications for WGScatalysts.Recently several formulations of noble-met-al…  相似文献   

5.
Structure and Catalytic Behavior of CuO-ZrO-CeO2 Mixed Oxides   总被引:1,自引:0,他引:1  
The effect of doping CuO on the structure and properties of zirconia-ceria mixed oxide was studied. The results show that addition of CuO decreases the reduction temperature of ceria, and stabilizes the cubic structure of mixed oxides, and enhances catalytic activity of CuO-ZrO-CeO2 mixed oxides for CO oxidation. Increasing ceria content in the mixed oxides can enhance the catalytic activity, but some impurities such as sulfate make catalytic activity falling. There is little effect of calcination temperature on catalytic activities, implying that these catalysts are effective with good thermal stability.  相似文献   

6.
The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activity, selectivity, and stability for RWGS reaction. Characterizations of the catalyst samples were conducted by XRD and TPR. The results indicated that, in Ni-CeO2 catalysts, there were three kinds of nickel, nickel ions in ceria lattice, highly dispersed NiO and bulk NiO. Oxygen vacancies were formed in CeO2 lattice due to the incorporation of Ni^2+ ions into ceria lattice. Oxygen vacancies formed in ceria lattice and highly dispersed Ni were key active components for RWGS, and bulk Ni was key active component for methanation of CO2.  相似文献   

7.
CeO2-ZrO2 mixed oxide(Ce0.6Zr0.4O2) prepared by microwave-assisted heating co-precipitation was used as a support to prepare a series of CuO/Ce0.6Zr0.4O2 catalysts with various CuO contents(0 wt.%–15 wt.%) via the method of incipient-wetness impregnation.The obtained CuO/Ce0.6Zr0.4O2 samples were characterized by N2 adsorption,XRD,Raman,TEM and H2-TPR technologies,and their catalytic activities for CO oxidation were investigated.The results showed that the activity of CuO/Ce0.6Zr0.4O2 catalyst was strongly influenced by the content of CuO,and the catalyst with 10 wt.% CuO exhibited the best catalytic activity in CO oxidation,which could be attributed to the high dispersion and reducibility of CuO,and high oxygen vacancy concentration in the catalyst.  相似文献   

8.
Catalytic Oxidative Properties and Characterization of CuO/CeO2 Catalysts   总被引:1,自引:0,他引:1  
CeO2 ormaterialscontainingCeO2 possessuniqueredoxpropertiesincatalyticprocesses[1~ 3] ,andcanimprovedispersionofactivecomponentsonthesup portsandthusenhancetheirthermalstabilityandcatalyticactivity .MoststudieshaveusedCeO2 asanadditive[4 ] andexamineditsintera…  相似文献   

9.
CeO2 was synthesized via sol-gel process and used as supporter to prepare CuO/CeO2, Cu/CeO2 catalysts by impregnation method. The catalytic properties and characterization of CeO2, CuO/CeO2 and Cu/CeO2 catalysts were examined by means of a microreactor-GC system, HRTEM, XRD, TPR and XPS techniques. The results show that CuO has not catalytic activity and the activity of CeO2 is quite low for CO oxidation. However, the catalytic activity of CuO/CeO2 and Cu/CeO2 catalysts increases significantly. Furthermore, the activity of CuO/CeO2 is higher than that of Cu/CeO2 catalysts.  相似文献   

10.
In this work, the addition of praseodymium(Pr) into ceria as a mixed oxide support in a form of Ce_(1-x)Pr_xO_2(x = 0.01,0.025, 0.050, 0.075 and 0.10) was prepared using a co-precipitation method. The structural and textural properties of the synthesized supports were characterized by X-ray diffraction(XRD), N_2 adsorption-desorption, Raman spectroscopy, H_2-temperature programmed reduction(H_2-TPR) and H_2-chemisorption. Upon addition of Pr, XRD patterns and Raman spectra indicated an enlargement of ceria unit cell and the characteristics Raman broad peak at 570 cm~(-1) which was attributed to the existence of oxygen vacancies in the ceria lattice. This indicated that some Ce~(4+) ions in ceria were replaced by larger Pr~(3+) cations. To evidence the incorporation of Pr~(3+) cations into ceria lattice,X-ray absorption near edge structure(XANES) was employed. The results showed that the oxidation states of Ce in mixed oxide supports were slightly lower than 4+ while those of Pr were still the same as a precursor salt. Therefore, the incorporation of Pr~(3+) into ceria lattice would lead to strain and unbalanced charge and result in oxygen vacancies. The reducibility of Ce_(1-x)Pr_xO_2 mixed oxide supports was investigated by H_2-TPR and temperature-resolved X-ray absorption spectroscopy experiment under reduction conditions. XANES spectra of Ce L_3 edges showed a lower surface reduction temperature(Ce~(4+)to Ce~(3+)) of Ce_(0.925)Pr_(0.075)O_2 than that of CeO_2 which agreed with H_2-TPR results. H_2-chemisorption indicated that Pr promoted the dispersion of the metal catalyst on the mixed oxide support and increased the adsorption site for CO. For WGS reaction, 1% Pd/mixed oxide support had higher WGS activity than 1%Pd/ceria. The increase of WGS activity was due to the increase of Pd dispersion on the support and the existence of oxygen vacancies produced from incorporation of Pr into the ceria lattice.  相似文献   

11.
The catalytic oxidation of ethyl acetate(EA) was studied over CuO/CeO2 catalysts which were prepared by ball milling with different precursors(copper oxide,cerium acetate,cerium dioxide,copper acetate and cerium hydroxide).The CuO/CeO2 catalyst(O-A) prepared with copper oxide and cerium acetate as precursors shows very high catalytic activity that 100% EA conversion is achieved at low temperature of 220℃.It is found that specific surface area(112.8 m2/g),particle...  相似文献   

12.
Catalytic combustion of methane was conducted by using a Cu-based catalyst prepared by the plasma-assisted impregnation method. The properties of the catalysts were surveyed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (H2-TPR). The results showed that the activity of CuO/ZrO2 with the CeO2 and Y2O3 was obviously increased compared with the CuO/ZrO2 catalyst, which was examined in relation to the structure and surface characteristics and might be correlated with their surface oxygen species and redox properties. Among the investigated catalysts, the Ce-CuO/ZrO2 sample exhibited the highest activity for methane combustion.  相似文献   

13.
Praseodymium(Pr) was impregnated to CeO2-ZrO2 solid solution by an impregnation method.The as-obtained Pr modified CeO2-ZrO2 was impregnated with 1 wt.% Pd to prepare the catalysts.The structure and reducibility of the fresh and hydrothermally aged catalysts were characterized by X-ray diffraction(XRD),Raman,X-ray photoelectron spectroscopy(XPS),CO chemisorption and H2 temperature-programmed reduction(H2-TPR).The oxygen storage capacity(OSC) was evaluated with CO serving as probe gas.Effects of impregnated Pr on the structure and oxygen storage capacity of catalysts were investigated.The results showed that the aged Pr-impregnated samples had much higher OSC and better reducibility than the unmodified ones.The scheme of structural evolutions of the catalysts with and without Pr was also established.Partial of the impregnated Pr diffused into the bulk of CeO2-ZrO2 during ageing,which inhibited the sintering,and increased the amount of oxygen vacancies in CeO2-ZrO2 support.Furthermore,those impregnated Pr species which covered on the surface of the support obstructed the strong metal-support interaction between Pd and Ce so as to reduce the encapsulation of Pd as well as the back spill-over of the oxygen during the catalytic process.  相似文献   

14.
Mesoporous CeO2-MnOx binary oxides with different Mn/Ce molar ratios were prepared by hydrothermal synthesis and characterized by scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (H2-TPR). The characterization results indicated that the CeO2-MnOx catalysts exhibited flower-like microspheres with high specific surface areas, and partial Mn cations could be incorporated into CeO2 lattice to form solid solution. The CeO2-MnOx catalysts showed better catalytic activity for CO oxidation than that prepared by the coprecipitation method. Furthermore, the CeO2-MnOx catalyst with Mn/Ce molar ratio of 1 in the synthesis gel (Ce-Mn-1) exhibited the best catalytic activity, over which the conversion of CO could achieve 90% at 135 ℃. This was ascribed to presence of more Mn species with higher oxida- tion state on the surface and the better reducibility over the Ce-Mn-I catalyst than other CeO2-MnOx catalysts.  相似文献   

15.
Pd@Zr/Ce O2 core-shell catalyst prepared by hydrothermal method was applied in CO oxidation reaction, exhibiting high CO oxidation activity at low temperature.XRD(X-ray diffraction) analysis demonstrated that the remarkable enhancement of catalytic performance was found to depend on the presence of more oxygen vacancies in the core-shell structure, which contributed higher content of and ready release of active oxygen species at low temperature, confirmed by H2-TPR(temperature programed reduction) results.Interestingly, introducing a small amount of zirconium(0.5 wt.%) exhibited a significant improvement of catalytic activity because the introduction of Zr further improved the amount of crystal defects and promoted the migration of oxygen species.  相似文献   

16.
The CuO/CeO2 catalysts were investigated by means of X-ray diffraction(XRD),laser Raman spectroscopy(LRS),X-ray photoelectronic spectroscopy(XPS),temperature-programmed reduction(TPR),in situ Fourier transform infrared spectroscopy(FTIR) and NO+CO reaction.The results revealed that the low temperature(150 °C) catalytic performances were enhanced for CO pretreated samples.During CO pretreatment,the surface Cu+/Cu0 and oxygen vacancies on ceria surface were present.The low valence copper species activated the adsorbed CO and surface oxygen vacancies facilitated the NO dissociation.These effects in turn led to higher activities of CuO/CeO2 for NO reduction.The current study provided helpful understandings of active sites and reaction mechanism in NO+CO reaction.  相似文献   

17.
The nano-crystalline Cu-Ce-Zr-O composite oxides were successfully prepared by the supercritical anti-solvent (SAS) process. The physicochemical properties and catalytic performances were investigated by X-ray diffraction (XRD), Raman spectroscopy, H2 temperature-programmed reduction (H2 -TPR), oxygen storage capacity (OSC) measurement and catalytic activity evaluation. It was found that Cu2+ ions incorporated into CeO2 -ZrO2 lattice to form Cu-Ce-Zr-O solid solution associated with the formation of oxygen vacancies. The Cu-Ce-Zr-O catalysts prepared via the SAS process with the Cu content 2.63 mol.% showed the highest OSC index of 636.9 μmol/g. Compared with the samples prepared by impregnation method, Cu doping using SAS process could improve the dispersion of Cu2+ in the composite oxide, enhance the interaction between Cu2+ and CeO2-ZrO2 , improve the reducibility of catalyst, and thus improve the OSC performance and increase the catalytic activity for CO oxidation at low temperature.  相似文献   

18.
Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 powders doped with different yttrium contents were successfully synthesized using a chemical precipitation method, under an alkalescent condition. Properties of the obtained samples were characterized and analyzed with X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), infrared (IR) absorbance, and the BET method. For the prepared samples with 20% (molar ratio) Y-doped content, a BET specific surface area of 106. 6 m^2 · g^- 1, with an average pore size of3~27 nm were obtained. XRD patterns showed that the doped samples were with a cubic fluorite structure. TEM micrographs revealed that the doped samples showed a spherical morphology with a diameter ranging from 20 to 30 nm and a round pore shape. IR results indicated that the Ce-O-Ce vibration intensity decreased as the Y-doped content increased. N2 adsorption-desorption isotherms showed that the samples possessed typical mesopore characteristics. The average pore size of the samples decreased alter mesoporous CeO2 was doped with yttrium, and the average pore size decreased largely as the Y-doped content increased.  相似文献   

19.
CeO2-MOx (M=Cu, Mn, Fe, Co, and Ni) mixed oxide catalysts were prepared by a citric acid complexation-combustion method. CeO2-MOx solid solutions could be formed with M cations doping into CeO2 lattice, while NiO and Co3O4 phases were detected on the surface of CeO2-NiO and CeO2-Co3O4 by Raman spectroscopy. The presence of M in CeO2 could obviously promote its catalytic activity for CH4 catalytic combustion and CO oxidation. Among the prepared samples, CeO2-CuO exhibited the best performance for CO oxidatio...  相似文献   

20.
The manufacture,physical characterization,environmental applications and cytotoxicity properties of nanocomposites consisting of CuO/CeO2 nano-rare earth composite materials prepared using the coprecipitation method at molar ratio of 6:4 with aqueous solutions of copper nitrate and cerium nitrate were reported.The performance of the selective catalytic oxidation of ammonia to N2(NH3-SCO) over a CuO/CeO2 nano-rare earth composite materials in a tubular fixed-bed reactor(TFBR) at temperatures from 423 to 673 K in the presence of oxygen was elucidated.The catalytic redox behavior was determined by cyclic voltammetry(CV).The nanocomposite particles were characterized by TEM,with a tiny particle size around 10 nm with high dispersion phenomena.Further,cell cytotoxicity and the percentage cell survival were determined by using 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenol)-2-(4-sulfophenyl)-2H-tetra-zolium(MTS) assay on human lung MRC-5 cell line.Experimental results showed that no apparent cytotoxicity was observed when the MRC-5 was exposed to the CuO/CeO2 nanocomposite materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号