首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid method to synthesize poly[2,2′-(p-oxydiphenylene)-5,5′-benzimidazole] (OPBI) through a solution polycondensation under microwave irradiation is explored. Synthesis parameters affecting the molecular weight (Mw) of OPBI, including the mass ratio of solvent to P2O5, the monomer concentration, and reaction time, are optimized. The main characteristics of OPBI are studied, and the corresponding membrane is prepared through a solvent casting process. A series of sulfuric acid doped OPBI (H2SO4/OPBI) hybrid membranes with different acid doping levels (ADLs) are developed. The effects of H2SO4 on microstructure, ADL and electrochemical properties of these membranes are explored. Herein, the hybrid membrane shows high proton conductivity (190 mS cm−1) at elevated temperature (160 °C) and anhydrous conditions, high ADL (18.73 mol of H2SO4 for OPBI per repeat unit, i.e., ADL = 18.73 mol PRU−1) and excellent dimensional stability (40.3%). All these properties demonstrated that H2SO4/OPBI hybrid membrane can be used as an alternative membrane for high temperature proton exchange membrane fuel cells (HT-PEMFCs).  相似文献   

2.
A new application of in-fibre Bragg grating (FBG) sensors for the distributed measurement of temperature inside a polymer electrolyte membrane fuel cell is demonstrated. Four FBGs were installed on the lands between the flow channels in the cathode collector plate of a single test cell, evenly spaced from inlet to outlet. In situ calibration of the FBG sensors against a co-located micro-thermocouple shows a linear, non-hysteretic response, with sensitivities in good agreement with the expected value. A relative error of less than 0.2 ° C over the operating range of the test cell (∼20-80 °C) was achieved, offering sufficient resolution to measure small gradients between sensors. While operating the fuel cell at higher current densities under co-flow conditions, gradients of more than 1 ° C were measured between the inlet and outlet sensors. Due to their small thermal mass, the sensors also exhibit good temporal response to dynamic loading when compared with the thermocouple. Design and instrumentation of the graphite collector plate features minimal intrusion by the sensors and easy adaptation of the techniques to bipolar plates for stack implementation.  相似文献   

3.
Graphite oxide/polybenzimidazole synthesized by 3, 3′-diaminobenzidine and 5-tert-butyl isophthalic acid (GO/BuIPBI) and isocyanate modified graphite oxide/BuIPBI (iGO/BuIPBI) composite membranes were prepared for high temperature polymer proton exchange membrane fuel cells (PEMFCs). All membranes were loaded with different content of phosphoric acid to provide proton conductivity. The GO/BuIPBI and iGO/BuIPBI membranes were characterized by SEM which showed that the filler GO or iGO were well dispersed in the polymer matrix and had a strong interaction with BuIPBI, which can improve the chemical stability of BuIPBI membrane and support a higher acid content. The proton conductivities of the GO/BuIPBI and iGO/BuIPBI with high acid loading were 0.016 and 0.027 S/cm, respectively, at 140 °C and without humidity.  相似文献   

4.
Phosphoric acid used as a proton-conductive medium in high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) poisons the Pt surface and prevents oxygen transport in the cathode catalyst layer. The hydrophobic binders in the catalyst not only maintain the catalyst layer structure but also control the phosphoric acid distribution. In this study, polytetrafluoroethylene (PTFE)/carbon black (Vulcan XC-72R) added to the catalyst layer generates an oxygen transport channel. The catalyst layers coated on the gas diffusion layer by the bar-coating method serve as the cathode. High PTFE content causes hydrophobicity in the catalyst layer. The membrane electrode assembly (MEA) with 6 wt% PTFE/Vulcan results in the highest peak power density (0.347 W cm−2) and voltage (0.653 V) at 0.2 A cm−2. A critical reason for its high performance is having the lowest Rct + Rmt values measured at 0.6 V and 0.4 V. These results could contribute to improving the MEA performance for HT-PEMFCs.  相似文献   

5.
In the development process of a fuel cell, understanding the local current distribution is essentially required to achieve better performance and durability. Therefore, many developers apply a segmented fuel cell to observe current distribution under various operating conditions. With the application, experimental data is collected. This study suggests a utilization method for this collected data to develop a local current prediction model. The details of this neural network-based prediction model are introduced, including the pretreatment of the data. In the pretreatment process, current residual values are used for better prediction performance. As a result, the model predicted local current values with a 2.98% error. With the model, the effects of pressure, temperature, cathode relative humidity, and cathode flow rate on local current distribution trends are analyzed. Since the non-uniform current distribution of a fuel cell often leads to low performances or fast local degradation, the optimal operating condition to achieve current uniformity is acquired with an additional model. This model is developed by switching inputs and outputs of the local current prediction model. With the model application, the uniform current distribution is achieved with a standard deviation of 0.039 A/cm2 under the current load at 1 Acm?2.  相似文献   

6.
Using a specially designed current distribution measurement gasket in anode and thin thermocouples between the catalyst layer and gas diffusion layer (GDL) in cathode, in-plane current and temperature distributions in a proton exchange membrane fuel cell (PEMFC) have been simultaneously measured. Such simultaneous measurements are realized in a commercially available experimental PEMFC. Experiments have been conducted under different air flow rates, different hydrogen flow rates and different operating voltages, and measurement results show that there is a very good correlation between local temperature rise and local current density. Such correlations can be explained and agree well with basic thermodynamic analysis. Measurement results also show that significant difference exists between the temperatures at cathode catalyst layer/GDL interface and that in the center of cathode endplate, which is often taken as the cell operating temperature. Compared with separate measurement of local current density or temperature, simultaneous measurements of both can reveal additional information on reaction irreversibility and various transport phenomena in fuel cells.  相似文献   

7.
8.
Performance and electrochemical impedance spectroscopy (EIS) tests were performed at different temperatures and humidity levels to understand the effects of temperature and humidity on the performance and resistance of a PBI/H3PO4 fuel cell.The results of the performance tests indicated that increasing the temperature significantly improved the cell performance. In contrast, no improvement was observed when the gas humidity was increased. On the other hand, the EIS results showed that the membrane resistance was reduced for elevated temperatures. This development can be interpreted by the increase in membrane conductivity, as reflected by the Arrhenius equation. As the formation of H4P2O7 and the self-dehydration of H3PO4 start around 130-140 °C, in PBI, they increase the membrane resistance at temperatures that are higher than 130 °C. In addition, the membrane resistance was reduced for elevated gas humidity levels. This is because an increase in humidity leads to an increase of the membrane hydration level.The resistance of the catalyst kinetics mainly contributes to the charge transfer resistance. However, under certain conditions, the interfacial charge transfer resistance is also important. It was concluded that the gas diffusion is the main contributor to the mass transfer resistance under dry conditions while it is the gas concentration under humid conditions.  相似文献   

9.
10.
Start-up time is one of the important factors that limit the application of high temperature polymer electrolyte fuel cells in several areas. Present work involves the analysis of different warm-up methodologies to analyse the start-up time for phosphoric acid doped PBI membrane based fuel cells. With this objective a number of three dimensional thermal models have been developed. Different heating methodologies such as reactant heating, coolant heating and combined heating (reactant and ohmic) are simulated. The ohmic heating is implemented for generating heat in the membrane itself at high current densities. Hence, combining it with other heating techniques is found effective in reducing start-up times significantly.  相似文献   

11.
The relation between high temperature proton exchange membrane fuel cell (HT-PEMFC) operation temperature and cell durability was investigated in terms of the deterioration mechanism. Long-term durability tests were conducted at operational temperatures of 150, 170, and 190 °C for a HT-PEMFC with phosphoric acid-doped polybenzimidazole electrolyte membranes. Higher cell temperatures were found to result in a higher cell voltage, but decrease cell life. The reduction in cell voltage of approximately 20 mV during the long-term tests was considered to be caused both by aggregation of the electrode catalyst particles in the early stage of power generation, in addition to the effects of crossover due to the depletion of phosphoric acid in the terminal stage, which occurs regardless of cell temperature. It is expected that enhanced long-term durability for practical applications can be achieved through effective management of phosphoric acid transfer.  相似文献   

12.
Gas diffusion electrodes (GDEs) prepared with various polymer binders in their catalyst layers (CLs) were investigated to optimize the performance of phosphoric acid doped polybenzimidazole (PBI)-based high temperature proton exchange membrane fuel cells (HT-PEMFCs). The properties of these binders in the CLs were evaluated by structure characterization, electrochemical analysis, single cell polarization and durability test. The results showed that polytetrafluoroethylene (PTFE) and polyvinylidene difluoride (PVDF) are more attractive as CL binders than conventional PBI or Nafion binder. At ambient pressure and 160 °C, the maximum power density can reach ∼ 0.61 W cm−2 (PTFE GDE), and the current density at 0.6 V is up to ca. 0.52 A cm−2 (PVDF GDE), with H2/air and a platinum loading of 0.5 mg cm−2 on these electrodes. Also, both GDEs showed good stability for fuel cell operation in a short term durability test.  相似文献   

13.
This paper provides information encompassing the recent discovery of the High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC) focusing on systems requirement. To have a reliable power production and higher durability level, a proper system must be applied in both normal and especially in transient operations. To date many issues of HT-PEMFC especially in durability and performance still unsolved. This article is written to provide clear information about the research undergo and must be the focus in order to produce an efficient performance. Information about the advantages towards Low Temperature Proton Exchange Membrane Fuel Cell (LT-PEMFC), the main components, and the mode of operation also discussed. In-depth research needs to be conducted into the innovative design and development of HT-PEMFC components and its system since these are the key factors for optimum performance.  相似文献   

14.
A gas crossover model is developed for a high temperature proton exchange membrane fuel cell (HT-PEMFC) with a phosphoric acid-doped polybenzimidazole membrane. The model considers dissolution of reactants into electrolyte phase in the catalyst layers and subsequent crossover of reactant gases through the membrane. Furthermore, the model accounts for a mixed potential on the cathode side resulting from hydrogen crossover and hydrogen/oxygen catalytic combustion on the anode side due to oxygen crossover, which were overlooked in the HT-PEMFC modeling works in the literature. Numerical simulations are carried out to investigate the effects of gas crossover on HT-PEMFC performance by varying three critical parameters, i.e. operating current density, operating temperature and gas crossover diffusivity to approximate the membrane degradation. The numerical results indicate that the effect of gas crossover on HT-PEMFC performance is insignificant in a fresh membrane. However, as the membrane is degraded and hence gas crossover diffusivities are raised, the model predicts non-uniform reactant and current density distributions as well as lower cell performance. In addition, the thermal analysis demonstrates that the amount of heat generated due to hydrogen/oxygen catalytic combustion is not appreciable compared to total waste heat released during HT-PEMFC operations.  相似文献   

15.
A novel test scheme for in situ measurement of temperature within a single polymer electrolyte membrane fuel cell (PEMFC) is proposed, which possesses the following attractive features: measuring interference with the internal environment of the fuel cell is likely reduced to minimum; simultaneous measurements for local temperatures of both sides of the fuel cell are conducted with enough numbers of measurement locations; and the cell temperatures are controlled in relatively careful and stringent strategies. Thermal and electrical behaviors of the cell tested are investigated, including the local and averaged temperatures at the back sides of cathode and anode flow field plates (FFPs), the outlet currents, and their variations with the test time. It is found that both temperatures and outlet currents exhibit complex dynamic behaviors; and the rise of temperature and the non-uniformity of temperature distribution of the back sides of the two FFPs are not negligible.  相似文献   

16.
We report on polymer electrolyte membrane fuel cells (PEMFCs) that function at high temperature and low humidity conditions based on short-side-chain perfluorosulfonic acid ionomer (SSC-PFSA). The PEMFCs fabricated with both SSC-PFSA membrane and ionomer exhibit higher performances than those with long-side-chain (LSC) PFSA at temperatures higher than 100 °C. The SSC-PFSA cell delivers 2.43 times higher current density (0.524 A cm−1) at a potential of 0.6 V than LSC-PFSA cell at 140 °C and 20% relative humidity (RH). Such a higher performance at the elevated temperature is confirmed from the better membrane properties that are effective for an operation of high temperature fuel cell. From the characterization technique of TGA, XRD, FT-IR, water uptake and tensile test, we found that the SSC-PFSA membrane shows thermal stability by higher crystallinity, and chemical/mechanical stability than the LSC-PFSA membrane at high temperature. These fine properties are found to be the factor for applying Aquivion™ E87-05S membrane rather than Nafion® 212 membrane for a high temperature fuel cell.  相似文献   

17.
Polymer electrolyte membrane as heart of a Fuel Cell electrochemical system to improve the durability of Fuel Cell performance at elevated temperatures requires the highest stability of proton conductivity, and thermal and chemical stability in long-term operations. In this research, the effect of SBA-15 mesoporous on the properties of H3PO4 doped polybenzimidazole/ionic liquid membranes were investigated for Fuel Cell applications under elevated temperatures. The H3PO4 doped polybenzimidazole based membranes were successfully fabricated by using polybenzimidazole (PBI) polymer with the same molecular weight and different amounts of 1,6-di (3-methylimidazolium) hexane dibromide dicationic ionic liquid (Mim2+ Br2 DIL), pure SBA-15 mesoporous and functionalized SBA-15 mesoporous with polyamidoamine groups (PAMAM mesoporous).The H3PO4 doped composite membrane containing 7% w/w Mim2+ Br2 DIL and 2% w/w PAMAM mesoporous with a superior mechanical strength and high thermal and chemical stability indicate a best electrochemical performance at 180 °C and 0.50 V under anhydrous conditions. The high proton conductivity stability of the composite membranes under elevated temperature and high humidity indicates that the introduction of PAMAM mesoporous with the NH2, NH and CO groups on the inner wall of its pores significantly improves the ability to retain of Mim2+ Br2 DIL and H3PO4. The results imply that use of PAMAM mesoporous as Mim2+ Br2 DIL and H3PO4 protectors against their leaching from the composite membrane is a new strategy to improve the stability of elevated temperature Fuel Cells performance in long-term operation.  相似文献   

18.
A high temperature-proton exchange membrane fuel cells (HT-PEMFC) based on phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane is able to operate at elevated temperature ranging from 100 to 200 °C. Therefore, it is evident that the relative humidity (RH) of gases within a HT-PEMFC must be minimal owing to its high operating temperature range. However, it has been continuously reported in the literature that a HT-PEMFC performs better under higher inlet RH conditions. In this study, inlet RH dependence on the performance of a HT-PEMFC is precisely studied by numerical HT-PEMFC simulations. Assuming phase equilibrium between membrane and gas phases, we newly develop a membrane water transport model for HT-PEMFCs and incorporate it into a three-dimensional (3-D) HT-PEMFC model developed in our previous study. The water diffusion coefficient in the membrane is considered as an adjustable parameter to fit the experimental water transport data. In addition, the expression of proton conductivity for PA-doped PBI membranes given in the literature is modified to be suitable for commercial PBI membranes with high PA doping levels such as those used in Celtec® MEAs. Although the comparison between simulations and experiments shows a lack of agreement quantitatively, the model successfully captures the experimental trends, showing quantitative influence of inlet RH on membrane water flux, ohmic resistance, and cell performance during various HT-PEMFC operations.  相似文献   

19.
High temperature proton exchange membrane fuel cells (HT-PEMFC), which operate between 160 °C and 200 °C, can be generally used in portable and stationary power generation applications. In this study, a one-dimensional, semi-empirical, and steady-state model of a HT-PEMFC fed with a gas mixture consisting of hydrogen and carbon monoxide is developed. Some modeling parameters are adjusted using empirical data, which are obtained conducting experiments on a HT-PEMFC for different values of Pt loading and cell temperature. For adjusting these parameters, the total summation of the square of the difference between the cell voltages found using the experimental and theoretical methods is minimized using genetic algorithm. After finding the values of the adjusted parameters, the effects of different cell temperature, Pt loading, phosphoric acid (PA) percentage, and different binders (PBI and PVDF) on the performance of the fuel cell are examined. It was found that, the performance of the fuel cell using PVDF binder exhibited better performance as compared to that using PBI binder.  相似文献   

20.
The segmented fuel cell technology was applied to investigate the effects of the humidification conditions on the internal locally resolved performance and the stability of the fuel cell system. It was found at certain operating conditions, the time-dependent oscillation of current at potentio-static state appeared. The appearance of positive spikes of current indicated a temporary improved performance, while the negative current spikes indicated a temporary decreased performance. The periodic build-up and removal of liquid water in the cell caused unstable cell performance. Through the analyses of the evolution of the locally resolved current density distributions, the reasons for the positive or the negative spikes of current peaks with respect to a stationary value were found, which might be due to the drying-out of the membrane or the flooding of the membrane. The contour of the current density mapping differed to each other at the period of current peaks up or down, which might be due to different effect of the drying-out or flooding on the membrane. Through optimizing the relative humidity of anode (RHa) or cathode (RHc) of the fuel cell, the oscillation of the current disappeared and the performance of the cell became stable. RHc affects the performance of fuel cell much more obviously than RHa. The stability of the fuel cell system is also dependent on the imposed voltage. With the cell voltage decreased, the amplitude and the frequency of positive spikes of current increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号