首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
In this study, we used a combination of graphene oxide-based porous carbon (GC) and titanium chloride (TiCl3) to improve the reversible dehydrogenation properties of magnesium hydride (MgH2). Examining the effects of GC and TiCl3 on the hydrogen storage properties of MgH2, the study found GC was a useful additive as confinement medium for promoting the reversible dehydrogenation of MgH2. And TiCl3 was an efficient catalytic dopant. A series of controlled experiments were carried out to optimize the sample preparation method and the addition amount of GC and TiCl3. In comparison with the neat MgH2 system, the MgH2/GC-TiCl3 composite prepared under optimized conditions exhibited enhanced dehydrogenation kinetics and lower dehydrogenation temperature. A combination of phase/microstructure/chemical state analyses has been conducted to gain insight into the promoting effects of GC and TiCl3 on the reversible dehydrogenation of MgH2. Our study found that GC was a useful scaffold material for tailoring the nanophase structure of MgH2. And TiCl3 played an efficient catalytic effect. Therefore, the remarkably improved dehydrogenation properties of MgH2 should be attributed to the synergetic effects of nanoconfinement and catalysis.  相似文献   

2.
In this study, the hydrogen storage properties of MgH2 with the addition of K2TiF6 were investigated for the first time. The temperature-programmed desorption results showed that the addition of 10 wt% K2TiF6 to the MgH2 exhibited a lower onset desorption temperature of 245 °C, which was a decrease of about 105 °C and 205 °C compared with the as-milled and as-received MgH2, respectively. The dehydrogenation and rehydrogenation kinetics of 10 wt% K2TiF6-doped MgH2 were also significantly improved compared to the un-doped MgH2. The results of the Arrhenius plot showed that the activation energy for the hydrogen desorption of MgH2 was reduced from 164 kJ/mol to 132 kJ/mol after the addition of 10 wt% K2TiF6. Meanwhile, the X-ray diffraction analysis showed the formation of a new phase of potassium hydride and titanium hydride together with magnesium fluoride and titanium in the doped MgH2 after the dehydrogenation and rehydrogenation process. It is reasonable to conclude that the K2TiF6 additive doped with MgH2 played a catalytic role through the formation of active species of KH, TiH2, MgF2 and Ti during the ball milling or heating process. It is therefore proposed that this newly developed product works as a real catalyst for improving the hydrogen sorption properties of MgH2.  相似文献   

3.
The influence of multiple additions of two oxides, Cr2O3 and Nb2O5, as additives on the hydrogen sorption kinetics of MgH2 after milling was investigated. We found that the desorption kinetics of MgH2 were improved more by multiple oxide addition than by single addition. Even for the milled MgH2 micrometric size powders, the high hydrogen capacity with fast kinetics were achieved for the powders after addition of 0.2 mol% Cr2O3 + 1 mol% Nb2O5. For this composition, the hydride desorbed about 5 wt.% hydrogen within 20 min and absorbed about 6 wt.% in 5 min at 300 °C. Furthermore, the desorption temperature was decreased by 100 °C, compared to MgH2 without any oxide addition, and the activation energy for the hydrogen desorption was estimated to be about 185 kJ mol−1, while that for MgH2 without oxide was about 206 kJ mol−1.  相似文献   

4.
In this research, the effect of NbF5 as an additive on the hydrogen desorption kinetics of MgH2 was investigated and compared to TiH2, Mg2Ni and Nb2O5 catalysts. The kinetics measurements were done using a method in which the ratio of the equilibrium plateau pressure to the opposing pressure was the same for all the reactions. The data showed NbF5 to be vastly superior to the other catalysts for improving the desorption kinetics of MgH2. The rates of desorption were found to be in the order NbF5 ? Nb2O5 > Mg2Ni > TiH2 > Pure MgH2. Kinetic modeling measurements showed that chemical reaction at the phase boundary to be the likely process controlling the reaction rates. TPD analyses showed the mixture with NbF5 has the lowest desorption temperature although it was accompanied with some weight penalty.  相似文献   

5.
The catalytic effects of K2NbF7 on the hydrogen storage properties of MgH2 have been studied for the first time. MgH2 + 5 wt% K2NbF7 has reduced the onset dehydrogenation temperature to 255 °C, which is 75 °C lower than the as-milled MgH2. For the rehydrogenation kinetic, at 150 °C, MgH2 + 5 wt% K2NbF7 absorbs 4.7 wt% of hydrogen in 30 min whereas the as-milled MgH2 only absorbs 0.7 wt% of hydrogen under similar condition. For the dehydrogenation kinetic, at 320 °C, the MgH2 + 5 wt% K2NbF7 is able to release 5.2 wt% of hydrogen in 5.6 min as compared to 0.3 wt% by the as-milled MgH2 under similar condition. Comparatively, the Ea value of MgH2 + 5 wt% K2NbF7 is 96.3 kJ/mol, which is 39 kJ/mol lower compared to the as-milled MgH2. The MgF2, the KH and the Nb that are found after the heating process are believed to be the active species that have improved the system properties. It is concluded that the K2NbF7 is a good catalyst to improve the hydrogen storage properties of MgH2.  相似文献   

6.
Magnesium hydrogenation being an exothermic reaction, the loading time of a tank is limited by heat extraction. The compaction of ball-milled MgH2 associated with Expanded Natural Graphite was used to improve the thermal conductivity of the resulting compacts. Taking advantage of these compacts, an intermediate scale tank (1.8 kg MgH2) cooled down by forced air circulation was designed. The absorption is initiated at 90 °C. Since the intrinsic kinetic is not the limiting factor, the hydrogen pressure does not affect the loading process. The loading time is strongly dependent on the cooling efficiency. However, beyond a given air flow rate it doesn’t decrease any more, the heat transfer being limited by the thermal conductivity of the compacted disks. During desorption, the maximum hydrogen flow (25 Nl/mn) is directly proportional to the thermal power of the heating system. The tank absorbs 1170 Nl, has a specific-energy of 270 W h/kg and a system volumetric-density of 42 gr/l.  相似文献   

7.
This paper presents a comparative study of H2 absorption and desorption in MgH2 milled with NbF5 or NbH0.9. The addition of NbF5 or NbH0.9 greatly improves hydriding and dehydriding kinetics. After 80 h of milling the mixture of MgH2 with 7 mol.% of NbF5 absorbs 60% of its hydrogen capacity at 250 °C in 30 s, whereas the mixture with 7 mol.% of NbH0.9 takes up 48%, and MgH2 milled without additive only absorbs 2%. At the same temperature, hydrogen desorption in the mixture with NbF5 finishes in 10 min, whereas the mixture with NbH0.9 only desorbs 50% of its hydrogen content, and MgH2 without additive practically does not releases hydrogen. The kinetic improvement is attributed to NbH0.9, a phase observed in the hydrogen cycled MgH2 + NbF5 and MgH2 + NbH0.9 materials, either hydrided or dehydrided. The better kinetic performance of the NbF5-added material is attributed to the combination of smaller size and enhanced distribution of NbH0.9 with more favorable microstructural characteristics. The addition of NbF5 also produces the formation of Mg(HxF1-x)2 solid solutions that limit the practically achievable hydrogen storage capacity of the material. These undesired effects are discussed.  相似文献   

8.
Study on the synergistic catalytic effect of the SrTiO3 and Ni on the improvement of the hydrogen storage properties of the MgH2 system has been carried out. The composites have been prepared using ball milling method and comparisons on the hydrogen storage properties of the MgH2 – Ni and MgH2 – SrTiO3 composites have been presented. The MgH2 – 10 wt% SrTiO3 – 5 wt% Ni composite is found to has a decomposition temperature of 260 °C with a total decomposition capacity of 6 wt% of hydrogen. The composite is able to absorb 6.1 wt% of hydrogen in 1.3 min (320 °C, 27 atm of hydrogen). At 150 °C, the composite is able to absorb 2.9 wt% of hydrogen in 10 min under the pressure of 27 atm of hydrogen. The composite has successfully released 6.1 wt% of hydrogen in 13.1 min with a total dehydrogenation of 6.6 wt% of hydrogen (320 °C). The apparent activation energy, Ea, for decomposition of SrTiO3-doped MgH2 reduced from 109.0 kJ/mol to 98.6 kJ/mol after the addition of 5 wt% Ni. The formation of Mg2Ni and Mg2NiH4 as the active species help to boost the performance of the hydrogen storage properties of the MgH2 system. Observation of the scanning electron microscopy images suggested the catalytic role of the SrTiO3 additive is based on the modification of composite microstructure.  相似文献   

9.
The objective of the present work is the comparative study of the behaviour of the Nb- and Ti-based additives in the MgH2 single hydride and the MgH2 + 2LiBH4 reactive hydride composite. The selected additives have been previously demonstrated to significantly improve the sorption reaction kinetics in the corresponding materials. X-Ray Diffraction (XRD), X-Ray Absorption Spectroscopy (XAS), X-Ray Photoelectron Spectroscopy (XPS) and Electron Microscopy (TEM) analysis were carried out for the milled and cycled samples in absence or presence of the additives. It has been shown that although the evolution of the oxidation state for both Nb- and Ti-species are similar in both systems, the Nb additive is performing its activity at the surface while the Ti active species migrate to the bulk. The Nb-based additive is forming pathways that facilitate the diffusion of hydrogen through the diffusion barriers both in desorption and absorption. For the Ti-based additive in the reactive hydride composite, the active species are working in the bulk, enhancing the heterogeneous nucleation of MgB2 phases during desorption and producing a distinct grain refinement that favours both sorption kinetics. The results are discussed in regards to possible kinetic models for both systems.  相似文献   

10.
In this paper, the hydrogen storage properties and reaction mechanism of the 4MgH2 + LiAlH4 composite system with the addition of Fe2O3 nanopowder were investigated. Temperature-programmed-desorption results show that the addition of 5 wt.% Fe2O3 to the 4MgH2 + LiAlH4 composite system improves the onset desorption temperature to 95 °C and 270 °C for the first two dehydrogenation stage, which is lower 40 °C and 10 °C than the undoped composite. The dehydrogenation and rehydrogenation kinetics of 5 wt.% Fe2O3-doped 4MgH2 + LiAlH4 composite were also improved significantly as compared to the undoped composite. Differential scanning calorimetry measurements indicate that the enthalpy change in the 4MgH2–LiAlH4 composite system was unaffected by the addition of Fe2O3 nanopowder. The Kissinger analysis demonstrated that the apparent activation energy of the 4MgH2 + LiAlH4 composite (125.6 kJ/mol) was reduced to 117.1 kJ/mol after doping with 5 wt.% Fe2O3. Meanwhile, the X-ray diffraction analysis shows the formation of a new phase of Li2Fe3O4 in the doped composite after the dehydrogenation and rehydrogenation process. It is believed that Li2Fe3O4 acts as an actual catalyst in the 4MgH2 + LiAlH4 + 5 wt.% Fe2O3 composite which may promote the interaction of MgH2 and LiAlH4 and thus accelerate the hydrogen sorption performance of the MgH2 + LiAlH4 composite system.  相似文献   

11.
The microstructure of MgH2 with 1 mol% NbF5, prepared by high-energy ball milling (HEBM), was studied using high resolution transmission electron microscopy (HR-TEM) with an X-ray energy dispersive spectrometer (EDS) before and after hydrogen sorption cycles. The TEM samples were prepared without any air exposure by a novel, focused ion beam (FIB) system specially designed for highly air sensitive materials. During HEBM, the doping agent, NbF5, was distributed as an extremely thin, film-like, amorphous phase along the grain boundaries of the nanocrystalline MgH2. After 10 sorption cycles, amorphous Nb-F phase was transformed into crystalline Nb hydrides. It is believed that the Nb hydride played a decisive role in improving the sorption kinetics of MgH2.  相似文献   

12.
It has been shown that the consequence of environmental exposure can be qualitatively predicted by modeling the heat generated as a result of environmental exposure of reactive hydrides along with heat loss associated with conduction and convection with the ambient surroundings. To this end, an idealized finite volume model was developed to represent the behavior of dispersed hydride from a breached system. Semi-empirical thermodynamic calculations and substantiating calorimetric experiments were performed in order to quantify the energy released, energy release rates and to quantify the reaction products resulting from water and air exposure of a lithium borohydride and magnesium hydride combination. The hydrides, LiBH4 and MgH2, were studied in a 2:1 “destabilized” mixture which has been demonstrated to be reversible. Liquid water hydrolysis reactions were performed in a Calvet calorimeter equipped with a mixing cell using pH-neutral water. Water vapor and gaseous oxygen reactivity measurements were performed at varying relative humidities and temperatures by modifying the calorimeter and utilizing a gas circulating flow cell apparatus. The results of these calorimetric measurements were used to develop quantitative kinetic expressions for hydrolysis and air oxidation in these systems. Thermodynamic parameters obtained from these tests were then incorporated into a computational fluid dynamics model to predict both the hydrogen generation rates and concentrations along with localized temperature distributions. The results of these numerical simulations can be used to predict ignition events and the resultant conclusions will be discussed.  相似文献   

13.
The possibility of increasing the solid-state reaction rate of MgH2 with Si by modifying the mixture preparation method and adding chemical compounds or elements, such as niobium pentafluoride (NbF5), nano-titanium (IV) oxide (TiO2), nano-chromium (III) oxide Cr2O3, yttrium, and nano- and microsized nickel, was investigated. The results show that changing the milling parameters of the MgH2 and Si mixture in a planetary ball mill greatly affects the rate of direct reaction between them and allows the reaction to take place at temperatures as low as 200 °C with an equilibrium pressure over 1 bar. Moreover, all additives significantly enhanced the reaction speed. The reaction pathway was found to be different for decomposition in a hydrogen vacuum and pressures of several bars. Reactions of the powders investigated did not occur at temperatures below 150 °C.  相似文献   

14.
MgH2 with 10 wt.% Ti0.4Mn0.22Cr0.1V0.28 alloy (termed the BCC alloy for its body centred cubic structure) and 5 wt.% carbon nanotubes (CNTs) were prepared by planetary ball milling, and its hydrogen storage properties were compared with those of the pure MgH2 and the binary mixture of MgH2 and the BCC alloy. The sample with CNTs showed considerable improvement in hydrogen sorption properties. Its temperature of desorption was 125 °C lower than for the pure sample and 59 °C lower than for the binary mixture. In addition, the gravimetric capacity of the ternary sample was 6 wt.% at 300 °C and 5.6 wt.% at 250 °C, and it absorbed 90% of this amount at 150 s and 516 s at 300 °C and 250 °C, respectively. It can be hypothesised from the results that the BCC alloy assists the dissociation of hydrogen molecules into hydrogen atoms and also promotes hydrogen pumping into the Mg/BCC interfaces, while the CNTs facilitate access of H-atoms into the interior of Mg grains.  相似文献   

15.
Reactive Hydride Composites (RHCs), ball-milled composites of two or more different hydrides, are suggested as an alternative for solid state hydrogen storage. In this work, dehydrogenation of 2NaBH4 + MgH2 system under vacuum was investigated using complementary characterization techniques. At first, thermal programmed desorption of as-milled composite and single compounds was used to identify the temperature range of hydrogen release. RHC samples annealed at various temperatures up to 500 °C were characterized by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. It was found that the dehydrogenation reaction under vacuum is likely to proceed as follows: 2NaBH4 + MgH2 (>250 °C) → 2NaBH4 + 1/2MgH2 + 1/2Mg + 1/2H2 (>350 °C) ↔ 3/2NaBH4 + 1/4MgB2 + 1/2NaH + 3/4Mg + 7/4H2 (>450 °C) → 2Na + B + 1/2Mg + 1/2MgB2 + 5H2. In addition, presence of NaMgH3 phase suggests the occurrence of secondary reactions.  相似文献   

16.
Previous studies have shown that ferrites give a positive effect in improving the hydrogen sorption properties of magnesium hydride (MgH2). In this study, another ferrite, i.e., BaFe12O19, has been successfully synthesised via the solid state method, and it was milled with MgH2 to enhance the sorption kinetics. The result showed that the MgH2 + 10 wt% BaFe12O19 sample started to release hydrogen at about 270 °C which is about 70 °C lower than the as-milled MgH2. The doped sample was able to absorb hydrogen for 4.3 wt% in 10 min at 150 °C, while as-milled MgH2 only absorbed 3.5 wt% of hydrogen under similar conditions. The desorption kinetic results showed that the doped sample released about 3.5 wt% of hydrogen in 15 min at 320 °C, while the as-milled MgH2 only released about 1.5 wt% of hydrogen. From the Kissinger plot, the apparent activation energy of the BaFe12O19-doped MgH2 sample was 115 kJ/mol which was lower than the milled MgH2 (141 kJ/mol). Further analyses demonstrated that MgO, Fe and Ba or Ba-containing contribute to the improvement by serving as active species, thus enhancing the MgH2 for hydrogen storage.  相似文献   

17.
Investigations on the catalytic effects of a non-reactive and stable additive, SrTiO3, on the hydrogen storage properties of the 4MgH2Na3AlH6 destabilized system were carried out for the first time. The Na3AlH6 compound and the destabilized systems used in the investigations are prepared using ball milling method. The doped system, 4MgH2Na3AlH6SrTiO3, had an initial dehydrogenation temperature of 145 °C, which 25 °C lower as compared to the un-doped system. The isothermal absorption and desorption capacity at 320 °C has increased by 1.2 wt% and 1.6 wt% with the addition of SrTiO3 as compared to the 4MgH2Na3AlH6 destabilized system. The decomposition activation energy of the doped system is estimated to be 117.1 kJ/mol. As for the XRD analyses at different decomposition stages, SrTiO3 is found to be stable and inert. In addition to SrTiO3, similar phases are found in the doped and the un-doped system during the decomposition and dehydrogenation processes. Therefore, the catalytic effect of the SrTiO3 is speculated owing to its ability to modify the physical structure of the 4MgH2Na3AlH6 particles through pulverization effect.  相似文献   

18.
Though LiBH4-MgH2 system exhibits an excellent hydrogen storage property, it still presents high decomposition temperature over 350 °C and sluggish hydrogen absorption/desorption kinetics. In order to improve the hydrogen storage properties, the influence of MoCl3 as an additive on the hydrogenation and dehydrogenation properties of LiBH4-MgH2 system is investigated. The reversible hydrogen storage performance is significantly improved, which leads to a capacity of about 7 wt.% hydrogen at 300 °C. XRD analysis reveals that the metallic Mo is formed by the reaction between LiBH4 and MoCl3, which is highly dispersed in the sample and results in improved dehydrogenation and hydrogenation performance of LiBH4-MgH2 system. From Kissinger plot, the activation energy for hydrogen desorption of LiBH4-MgH2 system with additive MoCl3 is estimated to be ∼43 kJ mol−1 H2, 10 kJ mol−1 lower than that for the pure LiBH4-MgH2 system indicating that the kinetics of LiBH4-MgH2 composite is significantly improved by the introduction of Mo.  相似文献   

19.
In this work, MgH2–SiC–Ni was prepared by magneto-mechanical milling in hydrogen atmosphere. Scanning electron microscope mapping images showed a homogeneous dispersion of both Ni and SiC among MgH2 particles. Based on the differential scanning calorimetry traces, the temperature of desorption is reduced by doping MgH2 with SiC and Ni. Hydrogen absorption/desorption behaviour of the samples was investigated by Sievert's method at 300 °C, and the results showed that both capacity and kinetics were improved by adding SiC and Ni. The hydrogen desorption kinetic investigation indicated that for pure MgH2, the rate-determining step is surface controlled and recombination, while for the MgH2–SiC–Ni sample it is controlled as described by the Johnson–Mehl–Avrami 3D model (JMA 3D).  相似文献   

20.
In this paper, amorphous NiB nanoparticles were fabricated by chemical reduction method and the effect of NiB nanoparticles on hydrogen desorption properties of MgH2 was investigated. Measurements using temperature-programmed desorption system (TPD) and volumetric pressure–composition isotherm (PCI) revealed that both the desorption temperature and desorption kinetics have been improved by adding 10 wt% amorphous NiB. For example, the MgH2–10 wt%NiB mixture started to release hydrogen at 180 °C, whereas it had to heat up to 300 °C to release hydrogen for the pure MgH2. In addition, a hydrogen desorption capacity of 6.0wt% was reached within 10 min at 300 °C for the MgH2–10 wt%NiB mixture, in contrast, even after 120 min only 2.0 wt% hydrogen was desorbed for pure MgH2 under the same conditions. An activation energy of 59.7 kJ/mol for the MgH2/NiB composite has been obtained from the desorption data, which exhibits an enhanced kinetics possibly due to the additives reduced the barrier and lowered the driving forces for nucleation. Further cyclic kinetics investigation using high-pressure differential scanning calorimetry technique (HP-DSC) indicated that the composite had good cycle stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号