首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
将极限学习机(ELM)方法引入电力系统短期负荷预测领域。该方法预测能力强,具有计算时间短、计算准确性高、全局搜索等显著特点。在运用ELM算法建立短期负荷预测模型过程中,采用归一化处理输入数据,使用主成分分析法选取计算样本,并由交互验证法确定最优主成分因子数和ELM隐含层节点数。实际算例表明,在于短期负荷预测的预测精度和运算时间方面,ELM方法较传统神经网络方法具有其独特的优势。  相似文献   

2.
基于改进极限学习机的短期电力负荷预测方法   总被引:2,自引:0,他引:2       下载免费PDF全文
为了提高电力系统短期负荷预测精度,提出一种基于改进极限学习机(MELM)的短期电力负荷预测模型。引入基于结构风险最小化理论,并结合最小二乘向量机回归学习方法,以克服传统极限学习机(ELM) 在短期负荷预测中存在的过拟合问题。某地区用电负荷预测结果表明,改进模型的泛化性与预测精度均优于传统ELM和OS-ELM模型,可为短期电力负荷预测提供有效依据,具有一定的实用性。  相似文献   

3.
针对极限学习机算法中输出波动大与模型不稳定的问题,提出采用切换模型极限学习算法进行超短期电力负荷预测的方法。该算法通过切换模型准则,将建立的多个神经网络模型分为误差较小的保持模型和误差较大的更新模型两部分。保持模型无需进行在线更新,减低了模型输出的波动性;更新模型则需采取随机方法进行在线更新,使得训练误差达到最小,提高模型的泛化能力。通过对某地区电力负荷的预测仿真,结果表明了所提方法提高了预测速度,节省了计算时间,具有更佳的泛化能力和预测精度。  相似文献   

4.
针对极限学习机(Extreme Learning Machine,ELM)在训练前随机产生输入层权值和隐含层阈值导致输出结果不稳定,影响短期负荷预测精度的缺陷,提出基于人工蜂群(Artificial Bee Colony,ABC)算法改进ELM(ABC-ELM)的短期负荷预测新方法。首先,选用历史负荷、外界气象因素和待预测日星期类型等属性构成ELM输入向量,以负荷值为输出,构建ELM模型;其次,采用ABC对ELM输入层权值和隐含层阈值进行优化;最后,根据优化参数,建立基于ABC-ELM的负荷预测模型,并以该模型开展负荷预测。根据国内某大型城市实测负荷数据开展实验,验证方法有效性。实验结果证明ABC-ELM较ELM和BP神经网络具有更高的稳定性和预测精度。  相似文献   

5.
电力系统短期负荷预测的准确性是影响电力系统运行安全的关键因素。以更精准进行短期负荷预测为目标,提出了一种基于改进鲸鱼算法(Improved Whale Optimization Algorithm,IWOA)优化的多维度深度极限学习机(Deep Extreme Learning Machine,DELM)短期负荷预测方法。首先,针对传统鲸鱼算法(Whale Optimization Algorithm,WOA)初始种群分布不够广泛的问题,引入Tent混沌映射对初始鲸鱼种群初始化;其次针对极限学习机模型(Extreme Learning Machine,ELM)数据深层隐藏的信息学习能力差的问题,采用深度极限学习机作为基础负荷预测模型,并以改进鲸鱼算法对其进行参数寻优;最后考虑到温度、湿度等因素对负荷变化影响较大,建立多维度IWOA-DELM负荷预测模型。仿真结果表明,与其他模型相比,多维度的IWOA-DELM模型预测的准确度更高。  相似文献   

6.
光伏发电短期预测在电力系统实时调度中具有重要意义。受诸多因素影响,光伏发电短期预测精度还无法达到光伏电站要求,对光伏并网调度带来较大影响。针对这一问题,提出了基于极限学习机(ELM)的光伏发电短期预测校正方法。说明了光伏发电短期预测中的误差特征,并利用提出的校正方法对原来光伏发电短期预测结果进行了优化。通过与其他方法的对比,验证了此方法的有效性,说明了论文方法能够有效提高光伏发电短期预测精度。  相似文献   

7.
8.
苏磊 《电工技术》2023,(12):152-154
针对微电网负荷功率的不确定性,提出了一种基于遗传算法优化的BP神经网络模型GA-BP,能够快速、有 效地建立非线性输入与输出之间的关系,对微电网短期负荷进行预测.通过对遗传算法优化的BP神经网络和传统BP 神经网络分别建立微电网负荷预测模型,对某地区的微电网短期负荷进行MATLAB仿真和计算,对2种模型的未来 24h短期负荷预测进行比较,验证了2种预测方法的有效性和可行性.由仿真结果可知,采用遗传算法优化的BP神 经网络预测的平均相对误差为3.23%,相较于传统的BP神经网络拥有更好的预测精度.  相似文献   

9.
利用改进的哈里斯鹰算法对核极限学习机进行优化,构建了CEHHO-KELM电力负荷预测模型。首先,在充分考虑了经济、时间、气候以及电网自身影响的基础上,采用灰色关联分析法筛选主要影响因素作为预测模型输入向量。然后,将优化的哈里斯鹰算法融合到核极限学习机的参数优化中,建立了CEHHO-KELM电力负荷预测模型。将某省电力负荷数据及其影响因素数据用于实证分析。仿真结果表明,CEHHO-KELM算法相较于HHO-KELM、LSSVM、KELM算法,能够较好地搜索核极限学习机的参数、更好地平衡全局和局部性能,从而使得KELM预测模型具有更高的预测精度。  相似文献   

10.
用户侧微电网负荷随机性强,短期负荷的预测精度对微电网的正常运行起着重要作用。提出了一种基于互补集成经验模态分解(CEEMD)和区域划分自适应变异粒子群(RSVPSO)算法优化核极限学习机(KELM)的负荷预测模型。采用互补集成经验模态分解将负荷序列分解为多组平稳的子序列,以减小不同局部信息之间的相互影响。针对粒子群算法易早熟和收敛速度慢的问题,利用区域划分来实现惯性权重和学习因子的自适应调整,提高粒子的全局寻优能力和搜索效率,并结合自适应变异操作避免陷入局部最优,加强核极限学习机预测精度。最后通过案例验证,所提模型的预测准确率约为98.114%,较其他预测模型具有更好的预测效果和实际应用意义。  相似文献   

11.
为了快速、准确预测具有随机性的电力负荷,引入经验模式分解和极限学习机组合负荷预测算法。首先,利用EMD将非平稳负荷序列分解成一系列相对平稳的分量,减少不同负荷影响因素间的相互影响;然后针对各分量的不同特性,利用ELM具有预测能力强、计算时间短、计算准确性高等特点建立不同的预测模型,分别预测各分量值;最后组合ELM预测的各分量值,得到最终预测结果。仿真算例表明,EMD和ELM组合预测方法较传统单一神经网络方法在短期负荷预测精度和运算时间方面具有其独特的优势。  相似文献   

12.
短期负荷预测是微电网经济调度的重要组成部分,预测误差将直接影响运行经济性。相对于大电网环境,在用户侧微电网实施短期负荷预测的难度更高。提出了一种基于经验模态分解、扩展卡尔曼滤波及核函数极限学习机的组合短期负荷预测模型,通过经验模态分解对随机性强的微电网负荷时间序列逐级分解为多组固有模态函数分量,采用扩展卡尔曼滤波及核函数极限学习机2种存在典型差异的预测模型对不同性质的固有模态函数分量进行预测,并采用粒子群算法实现模型参数的优选。针对用户侧微电网的环境约束,提出了离线参数寻优、周期参数更新与在线预测相结合的实现模式。通过多种类型、容量的用户侧微电网算例分析,验证了模型预测精度、周期更新稳定性与计算效率。  相似文献   

13.
随着电力负荷内涵复杂度和非线性增加,单纯追求电力负荷预测精度将变得困难。研究根据负荷样本分析其趋势、抽取特征来解决预测精度问题,即提出一种基于自组织特征映射网络(SOM)进行特征提取并与极限学习机(ELM)相结合的短期电力负荷预测方法。通过SOM特征提取找出与预测日同类型的历史数据作为训练样本;然后采用ELM进行预测,该方法预测过程简捷,能得到唯一的最优解。实验以某市的电力负荷数据进行仿真和比较。结果表明,基于SOM特征提取的ELM方法不仅精简了训练样本数量,且使训练更具有针对性,提高了预测精度和泛化性能,具有一定的理论意义和较好的应用前景。  相似文献   

14.
为获取足够精确的短期负荷预测值作为电力系统规划和运行的依据,提出一种加权多分位鲁棒极限学习机ELM(extreme learning machine)的短期负荷预测方法。首先融合分位回归与鲁棒ELM形成多分位鲁棒ELM基本预测模型,然后通过选取不同的分位值来模拟所有的可能性预测场景,以此得到不同分位场景下的预测值。最后按照"误差大、权值小;误差小、权值大"的误差反馈加权原则对上述不同分位下的预测值进行加权求和,以此得到最终的预测结果。实例证明该混合模型预测方法适用性强,且能取得较高的预测精度。  相似文献   

15.
为适应微电网的建设和发展对负荷预测效率及精度的要求,针对微电网负荷基数小、间歇性和随机性大等特点,提出一种基于历史认知果蝇优化算法(FOABHC)-优化支持向量机(SVM)的微电网短期负荷预测模型。以国内某微电网示范工程项目为例,将FOABHC_SVM用于微电网短期负荷预测。实例仿真结果表明,所提出的FOABHC_SVM预测模型优于SVM预测模型,更适用于当前微电网短期负荷预测需要。  相似文献   

16.
张林  刘继春 《中国电力》2021,54(3):132-140
准确的短期负荷预测在电力系统中发挥着至关重要的作用.近年来,大量短期负荷预测研究表明,与点预测相比,负荷的区间预测可以更有效地保证电力系统的安全运行.因此,提出一种基于EEMD-SE和PSO-KELM的短期负荷区间预测方法.首先,使用集合经验模态分解(EEMD)将原始负荷序列分解为一系列的子序列;然后,通过样本熵(SE...  相似文献   

17.
基于负荷特征提取的神经网络短期负荷预测   总被引:3,自引:11,他引:3  
丁坚勇  刘云 《高电压技术》2004,30(12):47-49
综合考虑天气负荷类型和历史数据特征对负荷变化的影响 ,提出了一种新的短期负荷预测方法。通过ARMA、BP神经网络等提取具有特征的神经网络学习样本 ,用反向传播算法建立神经网络短期负荷预测模型。实际算例表明 :该法在负荷平稳或波动较大的季节均有预测精度高且适应性好的特点。  相似文献   

18.
胡冰蕾 《供用电》2010,27(6):42-44,53
采用BP神经网络算法进行短期电力负荷预测存在缺点,需要进行完善和改进。介绍了BP神经网络算法进行短期负荷预测的原理,以及遗传算法的基本原理。具体叙述遗传算法对BP神经网络算法进行优化的实现步骤。优化后的算法避免了原来初始权值和阈值选择的盲目性,提高了BP神经网络算法短期负荷预测的精度和效率。通过具体算例,证明了此算法的可行性和有效性。  相似文献   

19.
基于模糊神经网络的电力负荷短期预测   总被引:5,自引:3,他引:5  
针对电力负荷的特点,综合考虑了温度及日期类型等因素对日最大负荷的影响,提出了一种采用模糊神经网络进行短期负荷预测的方法,并详细介绍了该方法的实现过程。通过对EUNITE(the European Network of Excellence on Intelligent Technologies for Smart Adaptive Systems)网络提供的实际数据进行详细分析确定了影响日最大负荷的相关因素,进而选择了合适的模糊输入以建立相应的模糊神经网络预测模型,并取得了较为理想的预测结果。算例分析结果充分证明了模糊神经网络在短期电力负荷预测方面具有较好的应用前景。  相似文献   

20.
随着电力行业的不断发展,负荷预测的重要性也不断彰显,作为负荷预测的重要组成部分,短期负荷预测对于电力系统的调度运行、市场交易都有着重要的意义,精确的负荷预测有助于提高发电设备的利用率和经济调度的有效性。由于影响负荷数据的随机因素太多且具有较强非线性的特点,提出一种基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测方法。通过对某市负荷数据进行仿真,将仿真结果与其他传统预测方法结果相对比,最终证明长短期记忆神经网络模型的误差更低,具有较高的预测精度。同时将互补集合经验模态分解下的长短期记忆神经网络方法与其他分解方法下的长短期记忆神经网络模型预测结果进行对比,验证互补集合经验模态分解方法对提升预测精度的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号