首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A wireless power transfer (WPT) system is generally designed with the optimum source and load impedance in order to achieve the maximum power transfer efficiency (PTE) at a specific coupling coefficient. Empirically or intuitively, however, it is well known that a high PTE can be attained by adjusting either the source or load impedance. In this paper, we estimate the maximum achievable PTE of WPT systems with the given load impedance, and propose the condition of source impedance for the maximum PTE. This condition can be reciprocally applied to the load impedance of a WPT system with the given source impedance. First, we review the transducer power gain of a two‐port network as the PTE of the WPT system. Next, we derive two candidate conditions, the critical coupling and the optimum conditions, from the transducer power gain. Finally, we compare the two conditions carefully, and the results therefore indicate that the optimum condition is more suitable for a highly efficient WPT system with a given load impedance.  相似文献   

2.
For magnetic resonant coupled wireless power transfer (WPT), the axial movement of near-field coupled coils adversely degrades the power transfer efficiency (PTE) of the system and often creates sub-resonance. This paper presents a tunable impedance matching technique based on optimum coupling tuning to enhance the efficiency of resonant coupled WPT system. The optimum power transfer model is analysed from equivalent circuit model via reflected load principle, and the adequate matching are achieved through the optimum tuning of coupling coefficients at both the transmitting and receiving end of the system. Both simulations and experiments are performed to evaluate the theoretical model of the proposed matching technique, and results in a PTE over 80% at close coil proximity without shifting the original resonant frequency. Compared to the fixed coupled WPT, the extracted efficiency shows 15.1% and 19.9% improvements at the centre-to-centre misalignment of 10 and 70 cm, respectively. Applying this technique, the extracted S21 parameter shows more than 10 dB improvements at both strong and weak couplings. Through the developed model, the optimum coupling tuning also significantly improves the performance over matching techniques using frequency tracking and tunable matching circuits.  相似文献   

3.
Despite the material performances being superior to those of organic materials, inorganic materials are typically excluded for use in flexible and deformable electronic systems because of their rigid nature and the requirement for high processing temperature. This work presents a novel method of utilizing rigid NiZn‐ferrite films in a flexible platform and offers an opportunity to realize a flexible wireless power transfer (WPT) module. Inkjet printing is introduced in this study since it can coat NiZn‐ferrite films as well as pattern inductor coils for WPTs. A thermochemically inert buffer layer is selected based on a thermodynamic analysis and is introduced as a buffer layer for the NiZn‐ferrite to prevent chemical reaction between the ferrite film and the substrate and ensure that the ferrite film can be easily separated from the substrate during a high‐temperature sintering process. A Ag‐inductor coil is printed on the NiZn‐ferrite layer, and then the entire layer is embedded into polydimethylsiloxane, which renders the WPT module flexible. The flexibility of the WPT module is characterized by a bending test, and the structural and magnetic properties are also investigated. The performance of the flexible WPT module is demonstrated by transmitting wireless power to a light emitting diode.  相似文献   

4.
Energy harvesting (EH) has been considered as one of the promising technologies to power Internet of Things (IoT) devices in self‐powered IoT networks. By adopting a typical harvest‐then‐transmit mode, IoT devices with the EH technology first harvest energy by using wireless power transfer (WPT) and then carry out wireless information transmission (WIT), which leads to the coordination between WPT and WIT. In this paper, we consider optimizing energy consumption of periodical data collection in a self‐powered IoT network with non‐orthogonal multiple access (NOMA). Particularly, we take into account time allocation for the WPT and WIT stages, node deployment, and constraints for data transmission. Moreover, to thoroughly explore the impact of different multiple access methods, we theoretically analyse and compare the performance achieved by employing NOMA, frequency division multiple access (FDMA), and time division multiple access (TDMA) in the considered IoT network. To validate the performance of the proposed method, we conduct extensive simulations and show that the NOMA outperforms the FDMA and TDMA in terms of energy consumption and transmission power.  相似文献   

5.
We propose a general theory to analyse and design the wireless power transfer (WPT) systems based on impedance matching. We take two commonly used structures as examples, the transformer-coupling-based WPT and the series/parallel capacitor-based WPT, to show how to design the impedance matching network (IMN) to obtain the maximum transfer efficiency and the maximum output power. Using the impedance matching theory (IMT), we derive a simple expression of the overall transfer efficiency by the coils’ quality factors and the coupling coefficient, which has perfect accuracy compared to full-circuit simulations. Full-wave electromagnetic software, CST Microwave Studio, has been used to extract the parameters of coils, thus providing us a comprehensive way to simulate WPT systems directly from the coils’ physical model. We have also discussed the relationship between the output power and the transfer efficiency, and found that the maximum output power and the maximum transfer efficiency may occur at different frequencies. Hence, both power and efficiency should be considered in real WPT applications. To validate the proposed theory, two types of WPT experiments have been conducted using 30 cm-diameter coils for lighting a 20 W light bulb with 60% efficiency over a distance of 50 cm. The experimental results have very good agreements to the theoretical predictions.  相似文献   

6.
Half‐duplex amplify‐and‐forward (AF) transmissions may result in insufficient use of degrees of freedom if they always use the cooperative mode regardless of the fading states. In this paper, we investigate the conditions under which cooperation offers better performance and the corresponding optimal power allocation during cooperation. Specifically, we first derive an expression of ergodic capacity and its upper bound for an AF cooperative communication system with n relay nodes. Secondly, we propose a novel quasi‐optimal power allocation (QOPA) scheme to maximize the upper bound of the derived ergodic capacity. For the QOPA scheme, the cooperative mode is only adopted when the channel gain of source‐to‐destination is worse than that of relay‐to‐destination. Moreover, we analyze the performance of the system with QOPA scheme when the relay moves, which is based on the random direction model, in a single‐relay wireless network. For a multi‐relay AF network, we compare the ergodic capacity and symbol error rate, corresponding to the proposed QOPA and equal power allocation schemes, respectively. Extensive simulations were conducted to validate analytical results, showing that both ergodic capacity and symbol error rate of the system with QOPA scheme are better than those of the system with equal power allocation scheme in a multi‐relay AF network. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper studies the problem of stable node matching for distributed simultaneous wireless information and power transfer in multiuser amplify‐and‐forward ad hoc wireless networks. Particularly, each source node aims to be paired with another node that takes the role of an amplify‐and‐forward relay to forward its signal to the destination, such that the achievable rate is improved, in return of some payment made to the relaying node. Each relaying node splits its received signal from its respective source into two parts: one for information processing and the other for energy harvesting. In turn, a matching‐theoretic solution based on the one‐to‐one stable marriage matching game is studied, and a distributed polynomial‐time complexity algorithm is proposed to pair each source node with its best potential relaying node based on the power‐splitting ratios, such that their utilities or payments are maximized while achieving network stability. For comparison purposes, an algorithm to enumerate all possible stable matchings is also devised to study the impact of different matchings on the source and relay utilities. Simulation results are presented to validate the proposed matching algorithm and illustrate that it yields sum‐utility and sum‐payment that are closely comparable to those of centralized power allocation and node pairing, with the added merits of low complexity, truth telling, and network stability.  相似文献   

8.
A general equivalent circuit model is developed for a wireless energy transfer system composed of multiple coils via coupled magnetic resonances. To verify the developed model, four types of wireless energy transfer systems are fabricated, measured, and compared with simulation results. To model a system composed of n‐coils, node equations are built in the form of an n‐by‐n matrix, and the equivalent circuit model is established using an electric design automation tool. Using the model, we can simulate systems with multiple coils, power sources, and loads. Moreover, coupling constants are extracted as a function of the distance between two coils, and we can predict the characteristics of a system having coils at an arbitrary location. We fabricate four types of systems with relay coils, two operating frequencies, two power sources, and the function of characteristic impedance conversion. We measure the characteristics of all systems and compare them with the simulation results. The flexibility of the developed model enables us to design and optimize a complicated system consisting of many coils.  相似文献   

9.
从两个相同谐振频率线圈耦合模型出发,介绍了系统的工作原理。分析了负载线圈对系统效率和距离的影响,并利用Matlab对其进行实验仿真。通过与硬件测试结果对比分析验证了理论的有效性,为提高无线电能传输距离和线圈的优化设计提供参考。  相似文献   

10.
This paper studies optimal resource allocation for multiple network‐coded two‐way relay in orthogonal frequency division multiplexing systems. All the two‐way relay nodes adopt amplify‐and‐forward and operate with analog network coding protocol. A joint optimization problem considering power allocation, relay selection, and subcarrier pairing to maximize the sum capacity under individual power constraints at each transmitter or total network power constraint is first formulated. By applying dual method, we provide a unified optimization framework to solve this problem. With this framework, we further propose three low‐complexity suboptimal algorithms. The complexity of the proposed optimal resource allocation (ORA) algorithm and three suboptimal algorithms are analyzed, and it is shown that the complexity of ORA is only a polynomial function of the number of subcarriers and relay nodes under both individual and total power constraints. Simulation results demonstrate that the proposed ORA scheme yields substantial performance improvement over a baseline scheme, and suboptimal algorithms can achieve a trade‐off between performance and complexity. The results also indicate that with the same total network transmit power, the performance of ORA under total power constraint can outperform that under individual power constraints. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
We present the design and fabrication of a 60 GHz medium power amplifier monolithic microwave integrated circuit with excellent gain‐flatness for a 60 GHz radio‐over‐fiber system. The circuit has a 4‐stage structure using microstrip coupled lines instead of metal‐insulator‐metal capacitors for unconditional stability of the amplifier and yield enhancement. The gains of each stage of the amplifier are modified to provide broadband characteristics of input/output matching for the first and fourth stages and to achieve higher gains for the second and third stages to improve the gain‐flatness of the amplifier for wideband.  相似文献   

12.
In this paper, we investigate the performance assessment of a bidirectional relaying system using energy harvesting techniques. We assume independent and nonidentically distributed (i.n.i.d.) Nakagami‐m fading channels where the amplify‐and‐forward relay is subject to co‐channel interference (CCI) due to transmissions of other transmitters. Two different scenarios, namely, scenario I and scenario II are evaluated. In scenario I, both end‐sources provide the required energy for the relay, whereas the relay also harvests energy from the co‐channel interferes. Then, in the first phase of cooperation, both end‐sources send the information to the relay, and after amplifying the received signal, relay transfers information to the appropriate destination in the second time‐slot. In the scenario II, both end‐sources harvest energy from the relay. After that, the information cooperative transmission is done similar to the first scenario. For both considered scenarios, tight closed‐form expressions of outage probability, symbol error probability, ergodic capacity, and throughput are obtained at arbitrary signal‐to‐noise‐ratios (SNRs). To get more insights, simplified high SNR results for both scenarios are also deduced where the diversity orders are obtained. Monte Carlo simulation results are presented to validate the correctness of our proposed analysis. Our results explicitly demonstrate that the first scenario has a better performance than the second one in the medium and high SNR region, whereas the second scenario outperforms the first one in the low SNR regime.  相似文献   

13.
In a wireless power transfer (WPT) system, the transfer performance is related to the mutual inductance between coils. However, the mutual inductance decreases with the increase of transfer distance. In this work, the relationship between the output voltage and the mutual inductance for WPT systems with air core and with ferrite core are analyzed. In order to improve the mutual inductance, a novel configuration of receiving resonator with a strong magnetic coupling is proposed. The mutual inductance and magnetic field distribution for coils with a cylindrical core and with the novel configuration are compared. Experiments are carried out for validation. The results indicate that the proposed WPT system is superior to the system with the cylindrical ferrite core in increasing the output voltage and power transfer efficiency.  相似文献   

14.
Two‐path or successive relaying, which aims to establish two relay links transmitting different information symbols in adjacent time slots, has recently emerged as an attractive wireless communication protocol to improve the spectral efficiency in half‐duplex cooperative systems. In this paper, we investigate power allocation and relay selection techniques for amplify‐and‐forward two‐path successive relaying networks. Our approach is based on the maximization of the received SNR subject to a total power budget consumed by the source and the relay assisting this specific transmission. Two scenarios including with and without direct link are considered here. We show that the main problem has a closed‐form solution and only requires a few amounts of feedback bits to be broadcasted. Numerical results reveal that the proposed approaches are more insensitive to the inter‐relay interference and robust to channel estimation errors; meanwhile, they perform better than the existing schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we address the issue of multi‐user receiver design in realistic multi‐cellular and multi‐rate CDMA systems based on performance analysis. We consider the multi‐user detection (MUD) technique, denoted interference subspace rejection (ISR), because it offers a wide range of canonic suppression modes that range in performance and complexity between interference cancellers and linear receivers. To further broaden our study, we propose a modified ISR scheme called hybrid ISR to cope better with multi‐rate transmissions. The performance analysis, which is based on the Gaussian assumption (GA) and validated by simulations, takes into account data estimation errors, carrier frequency mismatch, imperfect power control, identification errors of time‐varying multipath Rayleigh channels and intercell interference. This analysis enables us to optimize the selection of the MUD mode for multi‐rate transmissions in different operating conditions. The effectiveness of interference cancellation is indeed investigated under different mobile speeds, numbers of receiving antennas, near‐far situations, channel estimation errors, and out‐cell to in‐cell interference ratios. This investigation suggests that the out‐of‐cell interference, the residual in‐cell interference, the noise enhancement as well as low mobility favor the simplest MUD modes as they offer the best performance/complexity tradeoffs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
磁耦合谐振式无线电能传输技术具有传输距离中等、传输效率高、能穿过非磁导性障碍物传输电能等优点,使其有望取代电池为物联网中的传感器节点无线供电。本文通过研究磁耦合谐振式无线电能传输机理,构建了传输系统的集总参数电路模型,对各模型参数进行了理论计算,并根据模型对不同传输距离下系统的传输效率与负载功率进行了分析,得出了不同耦合状态下系统获得最大负载功率的条件。  相似文献   

17.
Multi‐media support is an important feature of third generation (3G) wireless communication systems, and Quality of Service (QoS) is a crucial issue, as in any other networking environment. In this paper, the QoS issues in the wireless last‐mile is investigated for 3G systems based on Wideband‐Code division multiple access (W‐CDMA). Supporting multiple rates in the CDMA environment introduces the power assignment problem, which is coupled with the bandwidth and error QoS parameters. Also, multi‐media traffic flows should be classified and serviced in such a way to provision delay guarantees. In this paper, a new framework, namely dynamic resource scheduling (DRS), is described and extensively studied. In order to serve multi‐media services with different requirements, a family of nine algorithms has been developed within the DRS framework. These algorithms can be categorized with respect to single or prioritized queuing architectures, fixed or variable rate bandwidth and power allocation, and variable spreading gain or multi‐code spreading strategies. The paper presents the performance of the DRS algorithms in comparison with each other and with conventional scheduled‐CDMA (S‐CDMA) and proposed schemes in the W‐CDMA standard. The performance for error and throughput QoS provisioning and power control dynamics are explored; advantages, disadvantages and limitations of the algorithms are discussed. The DRS framework is concluded to be a promising QoS architecture, with a simple, flexible, scalable structure that can be configured according to a given traffic scenario. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
As different power has its own receivers, this paper analyzes and designs a multiple-receiver wireless power transfer (WPT) system systematically. The equivalent circuit model of the system is established to analyze the key parameters including transmitter power, receiver power, transmission efficiency, and each receiver power allocation. A control circuit is proposed to achieve the maximum transmission efficiency and transmitter power control and arbitrary receiver power allocation ratios for different receivers. Through the proposed control circuit, receivers with different loads can allocate appropriate power according to its power demand, the transmitter power and system efficiency do not vary with the change of the number of receivers. Finally, this control circuit is validated using a 130-kHz WPT system with three receivers whose power received is 3:10:12, and the overall system efficiency can reach as high as 55.5%.  相似文献   

19.
This paper presents the fundamental principle, circuit implementation and measurement of wireless power transfer (WPT) technology through both Colpitts and Hartley oscillation prototype circuits. The Colpitts and Hartley oscillation prototypes are used to convert DC voltages into AC ones. Meanwhile, both half- and full-wave rectification circuits are designed correspondingly for AC/DC voltage conversion. In addition, the orientation and distance effects between the transmitting and receiving coils are investigated. The self-inductance, mutual-inductance and coupling coefficient for the coupled inductors are extracted as a function of distance and frequency by using an equivalent T-circuit network and a derived Z-parameter matrix. The proposed WPT systems operate at around 3.6 MHz and the transferred voltage is measured at the WPT receiving terminal. The measured results indicate that the two proposed WPT systems can operate properly for potential short-distance applications.  相似文献   

20.
In this paper, we present an integrated rail‐to‐rail fully differential operational transconductance amplifier (OTA) working at low‐supply voltages (1.5 V) with reduced power consumption and showing high DC gain. An embedded adaptive biasing circuit makes it possible to obtain low stand‐by power dissipation (lower than 0.17 mW in the rail‐to‐rail version), while the high DC gain (over 78 dB) is ensured by positive feedback. The circuit, fabricated in a standard CMOS integrated technology (AMS 0.35 μm), presents a 37 V/μs slew‐rate for a capacitive load of 15 pF. Experimental results and high values of two quality factors, or figures of merit, show the validity of the proposed OTA, when compared with other OTA configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号