首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An embedded DRAM macro with a self-adjustable timing control (STC) scheme, a negative edge transmission scheme (NET), and a power-down data retention (PDDR) mode is developed. A 13.98-mm/sup 2/ 16-Mb embedded DRAM macro is fabricated in 0.13 /spl mu/m logic-based embedded DRAM process. Co-salicide word lines and MIM capacitors are used for high-speed array operation. The delay timing variation of 36 % for an RC delay can be reduced to 3.8% by using the STC scheme. The NET scheme transfers array control signals to local array blocks with high accuracy. Thereby, the test chip achieves 1.2-V 312-MHz random cycle operation even in the low-power process. 73-/spl mu/W data retention power is realized by using the PDDR mode, which is 5% of conventional schemes.  相似文献   

2.
This work describes a 10-b 150-MSample/s 4-b-per-stage single-channel CMOS pipelined ADC incorporating improved gate-bootstrapping techniques for a wideband SHA and temperature- and supply-insensitive CMOS references. The proposed ADC is designed and fabricated in a 0.18-/spl mu/m one-poly six-metal CMOS technology. The measured differential and integral nonlinearities are within 0.69 LSB and 1.50 LSB, respectively. The prototype ADC shows a peak signal-to-noise-and-distortion ratio (SNDR) of 52 dB at 150 MSample/s. The ADC maintains the SNDR over 52 dB and 43 dB, respectively, for input frequencies up to the Nyquist frequency and 400 MHz at 140 MSample/s. The active die area is 2.2 mm/sup 2/ and the chip consumes 123 mW at 150 MSample/s.  相似文献   

3.
This paper describes an 8-bit 5-stage pipelined and interleaved analog-to-digital converter that performs analog processing only by means of open-loop circuits such as differential pairs and source followers to achieve a high conversion rate. The concept of sliding interpolation is proposed to obviate the need for a large number of comparators or interstage digital-to-analog converters and residue amplifiers. The pipelining scheme incorporates distributed sampling between the stages so as to relax the linearity-speed tradeoffs in the sample-and-hold circuits, A clock edge reassignment technique is also introduced that suppresses timing mismatches in interleaved systems, and a punctured interpolation method is proposed that reduces the integral nonlinearity error with negligible speed or power penalty. Fabricated in a 0.6-μm CMOS technology, the converter achieves differential and integral nonlinearities of 0.62 and 1.24 LSB, respectively, and a signal-to-(noise+distortion) ratio of 43.7 dB at a sampling rate of 150 MHz. The circuit draws 395 mW from a 3.3-V supply and occupies an area of 1.2×1.5 mm2  相似文献   

4.
An 80-MHz 8-bit CMOS D/A converter   总被引:1,自引:0,他引:1  
A high-speed 8-bit D/A converter has been fabricated in a 2-/spl mu/m CMOS technology. In order to achieve high accuracy, a current-cell matrix configuration and a switching sequence called symmetrical switching have been used. The mismatch problem of small-size transistors has been relaxed by this matrix configuration. The linearity error caused by an undesirable current distribution of the current sources has been reduced by symmetrical switching. A high-speed decoding circuit and a fast-setting current source have been developed. The experimental results show that the maximum conversion rate is 80 MHz, a typical DC integral linearity error is 0.38 LSB, a typical DC differential linearity error is 0.22 LSB, and the maximum power consumption is 145 mW. The chip size is 1.85 mm/spl times/2.05 mm.  相似文献   

5.
A novel fast random cycle embedded RAM macro with dual-port interleaved DRAM architecture (D2RAM) has been developed. The macro exploits three key circuit techniques: dual-port interleaved DRAM architecture, two-stage pipelined circuit operation, and write before sensing. Random cycle time of 8 ns under worst-case conditions has been confirmed with a 0.25-μm embedded DRAM test chip. This is six times faster than conventional DRAM  相似文献   

6.
A 8-bit subranging converter (ADC) has been realized in a 3-/spl mu/m silicon gate, double-polysilicon capacitor CMOS process. The ADC uses 31 comparators and is capable of conversion rates to 8 MHz at V/SUB DD/=5 V. Die size is 3.2/spl times/2.2 mm/SUP 2/.  相似文献   

7.
A two-step recycling technique is applied to implement a 10-b CMOS analog-to-digital (A/D) converter with a video conversion rate of 15 Msample/s. In a prototype digitally corrected converter, one capacitor-array multiplying digital-to-analog converter (MDAC) is used repeatedly as a sample-and-hold (S/H) amplifier, a DAC, and a residue amplifier so that the proposed converter may obtain linearity with the capacitor-array matching. An experimental fully differential A/D converter implemented using a double-poly 1-μm CMOS technology consumes 250 mW with a 5-V single supply, and its active die area, including all digital logic and output buffers, is 1.75 mm2 (2700 mil2). Because the conversion accuracy of the proposed architecture relies on a capacitor-array MDAC linearity, high-resolution CMOS A/D conversions are feasible at high frequencies if sophisticated circuit techniques are further developed. For high-speed two-phase versions, the system can be easily modified to use multiplexing and/or pipelining techniques with a separate S/H amplifier and/or two separate flash converters  相似文献   

8.
A 10-b 50-MHz digital-to-analog (D/A) converter for video applications that is based on a dual-ladder resistor string is presented. This approach allows the linearity requirements to be met without the need for selection or trimming. The D/A decoding scheme reduces the glitch energy, and signal-dependent switch signals reduce high-frequency distortion. The output buffer allows driving 1 Vpp to 75 Ω. The chip consumes 65 mW at maximum clock frequency and a full-swing output signal. The device is processed in a standard 1.6-μm CMOS process with a single 5-V supply voltage. The double-ladder architecture allows the requirements for small cell area and high linearity to be separated. Compensation techniques have been applied to reduce the second- and third-order distortion components; at 5-MHz signal frequency the total harmonic distortion is -53 dB  相似文献   

9.
A 2-V 10.7-MHz CMOS limiting amplifier/RSSI   总被引:2,自引:0,他引:2  
This paper presents low-voltage low-power CMOS circuit design techniques for an intermediate frequency (IF) limiting amplifier and received signal strength indicator (RSSI). The architecture of the limiting amplifier and RSSI employed is determined by the optimal power consumption for a specified speed, overall gain, and accuracy. Each gain cell of the limiting amplifier employs folded diode load for low-voltage operation. Offset is reduced by a cross-connected source-coupled pair offset subtractor that is along the signal path. Full-wave current rectification and summation are employed in the RSSI circuit to achieve high precision while maintaining low voltage and low power. Using a single 2-V supply voltage, measured results demonstrate the input dynamic range is larger than 75 dB for 10.7-MHz IF application. The prototype occupies an active area of 0.4 mm2 using a 0.6-μm digital CMOS technology. The power dissipation is 6.2 mW  相似文献   

10.
A low glitch 10-bit 75-MHz CMOS video D/A converter   总被引:1,自引:0,他引:1  
A low glitch 10-bit 75-MHz CMOS current-output video digital-to-analog Converter (DAC) for high-definition television (HDTV) applications is described. In order to achieve monotonicity and low glitch, a special segmented antisymmetric switching sequence and an innovative asymmetrical switching buffer have been used. The video DAC has been fabricated by using 0.8 μm single-poly double-metal CMOS technology. Experimental results indicated that the conversion rate is above 75 MHz, and nearly 50% of samples have differential and integral linearity errors less than 0.24 LSB and 0.6 LSB, respectively. The glitch has been reduced to be less than 3.9 pV·s and the settling time within ±0.1% of the final value is less than 13 ns. The video DAC is operated by a single 5 V power supply and dissipates 1.70 mW at 75 MHz conversion rate (140 mW in the DAC portion). The chip size of video DAC is 1.75 mm×1.2 mm (1.75 mm×0.7 mm for the DAC portion)  相似文献   

11.
High-speed operation, a 33-MHz serial cycle, and a 10-ns serial data access time have been realized by internal serial/parallel conversion circuits, a newly designed I/O controller circuit, new dynamic register circuits, a divided sensing method, and an optimized layout design. The chip is fabricated with a 1.2-/spl mu/m double-level polysilicon and double-level aluminium n-channel MOS process technology. An optimized interlevel insulator realizes equivalent first- and second-level aluminium pitches for a compact chip design. The chip size is 5.88/spl times/11.2 mm/SUP 2/. This memory has high-speed input and output capability as well as random accessibility. These features are suitable for TV and VCR frame-memory-system applications.  相似文献   

12.
A 12-bit 320-MSample/s current-steering D/A converter in 0.18-/spl mu/m CMOS is presented. In order to achieve high linearity and spurious free dynamic range (SFDR), a large degree of segmentation has been used, with the seven most significant bits (MSBs) being implemented as equally weighted current sources. A "design-for-layout" approach has allowed this to be done in an area of just 0.44 mm/sup 2/. The increased switching noise associated with a high degree of segmentation has been reduced by a new latch architecture. Differential nonlinearity of /spl plusmn/0.3 LSB and integral nonlinearity of /spl plusmn/0.4 LSB have been measured. Low-frequency SFDR of 95 dB has been achieved, while SFDR at 320 MS/s remains above 70 and 60 dB for input frequencies up to 10 and 60 MHz, respectively. The converter consumes a total of 82 mW from 1.8-V and 3.3-V supplies. The validity of the techniques used has been demonstrated by fabricating the converter in two separate 0.18-/spl mu/m processes with similar results measured for both.  相似文献   

13.
An 8-b video-rate subranging analog-to-digital (A/D) converter with pipelined wideband sample-and-hold (S/H) amplifiers is described. The chip architecture is based on a newly developed subranging technique that combines a digital-to-analog subconverter and a subtractor in one body. The development of a bandwidth enhancement technique for the S/H amplifier yields a wide effective resolution bandwidth using 1-μm CMOS technology. An effective resolution bandwidth of 25 MHz was achieved, as well as a small input capacitance of 1.5 pF, due to the high performance of the S/H circuit developed  相似文献   

14.
A 12-b, 10-MHz, 250-mW, four-stage analog-to-digital converter (ADC) was implemented using a 0.8-μm p-well CMOS technology. The ADC based on a digitally calibrated multiplying digital-to-analog converter (MDAC) selectively employs a binary-weighted capacitor array in the front-end stage and a unit-capacitor array in the remaining back-end stages to obtain 12 b level linearity while maintaining high yield. All the analog and digital circuit functional blocks are fully integrated on a single chip, which occupies a die area of 15 mm2 (4.2 mm×3.6 mm). Measured differential nonlinearity (DNL) and integral nonlinearity (INL) of the prototype are less than ±0.8 LSB and ±1.8 LSB, respectively  相似文献   

15.
A 56-mW 23-mm/sup 2/ GPS receiver with CPU-DSP-64 kRAM-256 kROM and a 27.2-mW 4.1-mm/sup 2/ radio has been integrated in a 180-nm CMOS process. The SoC GPS receiver, connected to an active antenna, provides latitude, longitude, height with 3-m rms precision with no need of external host processor in a [-40, 105]/spl deg/C temperature range. The radio draws 17 mA from a 1.6-1.8-V voltage supply, takes 11 pins of a VFQFPN68 package, and needs just a few passives for input match and a crystal for the reference oscillator. Measured radio performances are NF=4.8 dB, Gp=92 dB, image rejection > 30 dB, -112 dBc/Hz phase noise @ 1 MHz offset from carrier. Though GPS radio linearity and ruggedness have been made compatible with the co-existence of a microprocessor, radio silicon area and power consumption is comparable to state-of-the-art stand-alone GPS radio. The one reported here is the first ever single-chip GPS receiver requiring no external host to achieve satellite tracking and position fix with a total die area of 23 mm/sup 2/ and 56-mW power consumption.  相似文献   

16.
A new type of static memory cell-dual depletion CMOS (D/SUP 2/MOS)-has been designed and fabricated using SOS wafers by the conventional CMOS/SOS technology. In contrast to the conventional CMOS static memory cell, which comprises six transistors, the new cell consists merely of four transistors and one data-line so that the cell area can be significantly reduced.  相似文献   

17.
A 10-b binary-weighted D/A digital-to-analog converter based on current division is presented. The effective resolution bandwidth is 5 MHz at a maximum clock frequency of 40 MHz. The circuit is integrated in a 0.8-μm double-metal CMOS technology and the chip area is 0.4 mm2. This particular converter was realized by constructing the bit currents through a careful combination of unit current sources and by limiting the driving voltage on the gates of the current switches  相似文献   

18.
This work proposes an 11b 70-MHz CMOS pipelined analog-digital converter (ADC) as one of core circuit blocks for very high speed digital subscriber line system applications. The proposed ADC for the internal use has the strictly limited number of externally connected I/O pins while the ADC employs on-chip CMOS current/voltage references and a merged-capacitor switching technique to improve ADC performances. The ADC implemented in a 0.18-/spl mu/m 1P4M CMOS technology shows the maximum signal-to-noise distortion ratio (SNDR) of 60 dB at 70 MSample/s. The ADC maintains the SNDR of 58 dB and the spurious-free dynamic resistance of 68 dB for input frequencies up to the Nyquist rate at 60 MSample/s. The measured differential and integral nonlinearities of the ADC are within /spl plusmn/0.63 and /spl plusmn/1.21 LSB, respectively. The active chip area is 1.2 mm/sup 2/ and the ADC consumes 49 mW at 70 MSample/s at 1.8 V.  相似文献   

19.
A low-voltage 10-bit digital-to-analog converter (DAC) for static/dc operation is fabricated in a standard 0.18-/spl mu/m CMOS process. The DAC is optimized for large integrated circuit systems where possibly dozens of such DAC would be employed for the purpose of digitally controlled analog circuit calibration. The DAC occupies 110 /spl mu/m/spl times/94 /spl mu/m die area. A segmented R-2R architecture is used for the DAC core in order to maximize matching accuracy for a minimal use of die area. A pseudocommon centroid layout is introduced to overcome the layout restrictions of conventional common centroid techniques. A linear current mirror is proposed in order to achieve linear output current with reduced voltage headroom. The measured differential nonlinearity by integral nonlinearity (DNL/INL) is better than 0.7/0.75 LSB and 0.8/2 LSB for 1.8-V and 1.4-V power supplies, respectively. The DAC remains monotonic (|DNL|<1 LSB) as INL reaches 4 LSB down to 1.3-V operation. The DAC consumes 2.2 mA of current at all supply voltage settings.  相似文献   

20.
An analog-to-digital converter incorporating a distributed track-and-hold preprocessing combined with folding and interpolation techniques has been designed in CMOS technology. The presented extension of the well known folding concept has resulted in a 75 MHz maximum full-scale input signal frequency. A signal-to-noise ratio of 44 dB is obtained for this frequency. The 8-b A/D converter achieves a clock frequency of 80 MHz with a power dissipation of 80 mW from a 3.3 V supply voltage. The active chip area is 0.3 mm2 in 0.5-μm standard digital CMOS technology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号