首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Topology optimization is one of the most effective tools for conducting lightweight design and has been implemented across multiple industries to enhance product development. The typical topology optimization problem statement is to minimize system compliance while constraining the design space to an assumed volume fraction. The traditional single-material compliance problem has been extended to include multiple materials, which allows increased design freedom for potentially better solutions. However, compliance minimization has the limitations for practical lightweight design because compliance lacks useful physical meanings and has never been a design criterion in industry. Additionally, the traditional compliance minimization problem statement requires volume fraction constraints to be selected a priori; however, designers do not know the optimized balance among materials. In this paper, a more practical method of multi-material topology optimization is presented to overcome the limitations. This method seeks the optimized balance among materials by minimizing the total weight while satisfying performance constraints. This paper also compares the weight minimization approach to compliance minimization. Several numerical examples prove the success of weight minimization and demonstrate its benefit over compliance minimization.  相似文献   

2.
This article is devoted to topology optimization of trusses under multiple loading conditions. Compliance minimization with material volume constraint and stress-constrained minimum weight problem are considered. In the case of a single loading condition, it has been shown that the two problems have the same optimal topology. The possibility of extending this result for problems involving multiple loading conditions is examined in the present work. First, the compliance minimization problem is formulated as a multicriterion optimization problem, where the conflicting criteria are the compliances of the different loading conditions. Then, the optimal topologies of the stress-constrained minimum weight problem and the multicriterion compliance minimization problem for a simple test example are compared. The results verify that when multiple loading conditions are involved, the stress-constrained minimum weight topology cannot be obtained in general by solving the compliance minimization problem.  相似文献   

3.
Finite topology variations in optimal design of structures   总被引:1,自引:0,他引:1  
The method of optimal design of structures by finite topology modification is presented in the paper. This approach is similar to growth models of biological structures, but in the present case, topology modification is described by the finite variation of a topological parameter. The conditions for introducing topology modification and the method for determining finite values of topological parameters characterizing the modified structure are specified. The present approach is applied to the optimal design of truss, beam, and frame structures. For trusses, the heuristic algorithm of bar exchange is proposed for minimizing the global compliance subject to a material volume constraint and it is extended to volume minimization with stress and buckling constraints. The optimal design problem for beam and frame structures with elastic or rigid supports, aimed at minimizing the structure cost for a specified global compliance, is also considered.  相似文献   

4.
In this paper an ordered multi-material SIMP (solid isotropic material with penalization) interpolation is proposed to solve multi-material topology optimization problems without introducing any new variables. Power functions with scaling and translation coefficients are introduced to interpolate the elastic modulus and the cost properties for multiple materials with respect to the normalized density variables. Besides a mass constraint, a cost constraint is also considered in compliance minimization problems. A heuristic updating scheme of the design variables is derived from the Kuhn-Tucker optimality condition (OC). Since the proposed method does not rely on additional variables to represent material selection, the computational cost is independent of the number of materials considered. The iteration scheme is designed to jump across the discontinuous point of interpolation derivatives to make stable transition from one material phase to another. Numerical examples are included to demonstrate the proposed method. Because of its conceptual simplicity, the proposed ordered multi-material SIMP interpolation can be easily embedded into any existing single material SIMP topology optimization codes.  相似文献   

5.
针对用有限元法进行连续体结构拓扑优化时需不断重构网格来处理网格畸变和网格移动,且存在数值计算不稳定等问题,基于无网格径向点插值方法(Radial Point Interpolation Method,RPIM)对简谐激励下的连续体结构进行拓扑优化.选取节点的相对密度作为设计变量,以结构动柔度最小化为目标函数,基于带惩罚的各向同性固体微结构(Solid Isotropic Microstructure with Penalization,SIMP)模型建立简谐激励下的优化模型;采用伴随法求解得到目标函数的敏度分析公式;利用优化准则法求解优化模型.经典的二维连续体结构拓扑优化算例证明该方法的可行性和有效性.  相似文献   

6.
This paper presents a structural topology optimization method based on a reaction–diffusion equation. In our approach, the design sensitivity for the topology optimization is directly employed as the reaction term of the reaction–diffusion equation. The distribution of material properties in the design domain is interpolated as the density field which is the solution of the reaction–diffusion equation, so free generation of new holes is allowed without the use of the topological gradient method. Our proposed method is intuitive and its implementation is simple compared with optimization methods using the level set method or phase field model. The evolution of the density field is based on the implicit finite element method. As numerical examples, compliance minimization problems of cantilever beams and force maximization problems of magnetic actuators are presented to demonstrate the method’s effectiveness and utility.  相似文献   

7.
Combining genetic algorithms with BESO for topology optimization   总被引:2,自引:1,他引:1  
This paper proposes a new algorithm for topology optimization by combining the features of genetic algorithms (GAs) and bi-directional evolutionary structural optimization (BESO). An efficient treatment of individuals and population for finite element models is presented which is different from traditional GAs application in structural design. GAs operators of crossover and mutation suitable for topology optimization problems are developed. The effects of various parameters used in the proposed GA on the optimization speed and performance are examined. Several 2D and 3D examples of compliance minimization problems are provided to demonstrate the efficiency of the proposed new approach and its capability of obtaining convergent solutions. Wherever possible, the numerical results of the proposed algorithm are compared with the solutions of other GA methods and the SIMP method.  相似文献   

8.
This paper proposes a topology optimization for a linear elasticity design problem subjected to an uncertain load. The design problem is formulated to minimize a robust compliance that is defined as the maximum compliance induced by the worst load case of an uncertain load set. Since the robust compliance can be formulated as the scalar product of the uncertain input load and output displacement vectors, the idea of “aggregation” used in the field of control is introduced to assess the value of the robust compliance. The aggregation solution technique provides the direct relationship between the uncertain input load and output displacement, as a small linear system composed of these vectors and the reduced size of a symmetric matrix, in the context of a discretized linear elasticity problem, using the finite element method. Introducing the constraint that the Euclidean norm of the uncertain load set is fixed, the robust compliance minimization problem is formulated as the minimization of the maximum eigenvalue of the aggregated symmetric matrix according to the Rayleigh–Ritz theorem for symmetric matrices. Moreover, the worst load case is easily established as the eigenvector corresponding to the maximum eigenvalue of the matrix. The proposed structural optimization method is implemented using topology optimization and the method of moving asymptotes (MMA). The numerical examples provided illustrate mechanically reasonable structures and establish the worst load cases corresponding to these optimal structures.  相似文献   

9.
A topological derivative method for topology optimization   总被引:4,自引:2,他引:2  
We propose a fictitious domain method for topology optimization in which a level set of the topological derivative field for the cost function identifies the boundary of the optimal design. We describe a fixed-point iteration scheme that implements this optimality criterion subject to a volumetric resource constraint. A smooth and consistent projection of the region bounded by the level set onto the fictitious analysis domain simplifies the response analysis and enhances the convergence of the optimization algorithm. Moreover, the projection supports the reintroduction of solid material in void regions, a critical requirement for robust topology optimization. We present several numerical examples that demonstrate compliance minimization of fixed-volume, linearly elastic structures.  相似文献   

10.
In this research, Method of Moving Asymptotes (MMA) is utilized for simultaneous shape and topology optimization of shell structures. It is shown that this approach is well matched with the large number of topology and shape design variables. The currently practiced technology for optimization is to find the topology first and then to refine the shape of structure. In this paper, the design parameters of shape and topology are optimized simultaneously in one go. In order to model and control the shape of free form shells, the NURBS (Non Uniform Rational B-Spline) technology is used. The optimization problem is considered as the minimization of mean compliance with the total material volume as active constraint and taking the shape and topology parameters as design variables. The material model employed for topology optimization is assumed to be the Solid Isotropic Material with Penalization (SIMP). Since the MMA optimization method requires derivatives of the objective function and the volume constraint with respect to the design variables, a sensitivity analysis is performed. Also, for alleviation of the instabilities such as mesh dependency and checkerboarding the convolution noise cleaning technique is employed. Finally, few examples taken from literature are presented to demonstrate the performance of the method and to study the effect of the proposed concurrent approach on the optimal design in comparison to the sequential topology and shape optimization methods.  相似文献   

11.
This paper focuses on the stress-constrained topology optimization of minimizing the structural volume and compliance. A new method based on adaptive volume constraint and stress penalty is proposed. According to this method, the stress-constrained volume and compliance minimization topology optimization problem is transformed into two simple and related problems: a stress-penalty-based compliance minimization problem and a volume-decision problem. In the former problem, stress penalty is conducted and used to control the local stress level of the structure. To solve this problem, the parametric level set method with the compactly supported radial basis functions is adopted. Meanwhile, an adaptive adjusting scheme of the stress penalty factor is used to improve the control of the local stress level. To solve the volume-decision problem, a combination scheme of the interval search and local search is proposed. Numerical examples are used to test the proposed method. Results show the lightweight design, which meets the stress constraint and whose compliance is simultaneously optimized, can be obtained by the proposed method.  相似文献   

12.
We describe a systematic approach for the robust optimal design of linear elastic structures subjected to unknown loading using minmax and topology optimization methods. Assuming only the loading region and norm, we distribute a given amount of material in the design domain to minimize the principal compliance, i.e. the maximum compliance that is produced by the worst-case loading scenario. We evaluate the principal compliance directly by satisfying the optimality conditions which take the form of a Steklov eigenvalue problem and thus we eliminate the need of an iterative nested optimization. To generate a well-posed topology optimization problem we use relaxation which requires homogenization theory. Examples are provided to demonstrate our algorithm.  相似文献   

13.
Topology optimization of trusses by growing ground structure method   总被引:2,自引:0,他引:2  
A new method called the growing ground structure method is proposed for truss topology optimization, which effectively expands or reduces the ground structure by iteratively adding or removing bars and nodes. The method uses five growth strategies, which are based on mechanical properties, to determine the bars and nodes to be added or removed. Hence, the method can optimize the initial ground structures such that the modified, or grown, ground structures can generate the optimal solution for the given set of nodes. The structural data of trusses are manipulated using C++ standard template library and the Boost Graph Library, which help alleviate the programming efforts for implementing the method. Three kinds of topology optimization problems are considered. The first problem is a compliance minimization problem with cross-sectional areas as variables. The second problem is a minimum compliance problem with the nodal coordinates also as variables. The third problem is a minimum volume problem with stress constraints under multiple load cases. Six numerical examples corresponding to these three problems are solved to demonstrate the performance of the proposed method.  相似文献   

14.
Parallel computing is an integral part of many scientific disciplines. In this paper, we discuss issues and difficulties arising when a state-of-the-art parallel linear solver is applied to topology optimization problems. Within the topology optimization framework, we cannot readjust domain decomposition to align with material decomposition, which leads to the deterioration of performance of the substructuring solver. We illustrate the difficulties with detailed condition number estimates and numerical studies. We also report the practical performances of finite element tearing and interconnection/dual–primal solver for topology optimization problems and our attempts to improve it by applying additional scaling and/or preconditioning strategies. The performance of the method is finally illustrated with large-scale topology optimization problems coming from different optimal design fields: compliance minimization, design of compliant mechanisms, and design of elastic surface wave-guides. The authors acknowledge the support of the Air Force Office of Scientific Research (AFOSR) under grant FA9550-05-1-0046. The computational facility was obtained under the grant AFOSR-DURIP FA9550-05-1-0291.  相似文献   

15.
This paper develops an extended bi-directional evolutionary structural optimization (BESO) method for topology optimization of continuum structures with smoothed boundary representation. In contrast to conventional zigzag BESO designs and removal/addition of elements, the newly proposed evolutionary topology optimization (ETO) method, determines implicitly the smooth structural topology by a level-set function (LSF) constructed by nodal sensitivity numbers. The projection relationship between the design model and the finite element analysis (FEA) model is established. The analysis of the design model is replaced by the FEA model with various elemental volume fractions, which are determined by the auxiliary LSF. The introduction of sensitivity LSF results in intermediate volume elements along the solid-void interface of the FEA model, thus contributing to the better convergence of the optimized topology for the design model. The effectiveness and robustness of the proposed method are verified by a series of 2D and 3D topology optimization design problems including compliance minimization and natural frequency maximization. It has been shown that the developed ETO method is capable of generating a clear and smooth boundary representation; meanwhile the resultant designs are less dependent on the initial guess design and the finite element mesh resolution.  相似文献   

16.
Topology optimization problems for compliant mechanisms using a density interpolation scheme, the rational approximation of material properties (RAMP) method, and a globally convergent version of the method of moving asymptotes (GCMMA) are primarily discussed. First, a new multi-objective formulation is proposed for topology optimization of compliant mechanisms, in which the maximization of mutual energy (flexibility) and the minimization of mean compliance (stiffness) are considered simultaneously. The formulation of one-node connected hinges, as well as checkerboards and mesh-dependency, is typically encountered in the design of compliant mechanisms. A new hybrid-filtering scheme is proposed to solve numerical instabilities, which can not only eliminate checkerboards and mesh-dependency efficiently, but also prevent one-node connected hinges from occurring in the resulting mechanisms to some extent. Several numerical applications are performed to demonstrate the validity of the methods presented in this paper.  相似文献   

17.
In this paper a general framework for topology optimization of structures in unilateral contact is developed. A linear elastic structure that is unilaterally constrained by rigid supports is considered. The supports are modeled by Signorini’s contact conditions which in turn are treated by the augmented Lagrangian approach as well as by a smooth approximation. The latter approximation must not be confused with the well-known penalty approach. The state of the system, which is defined by the equilibrium equation and the two different contact formulations, is solved by a Newton method. The design parametrization is obtained by using the SIMP-model. The minimization of compliance for a limited value of volume is considered. The optimization problems are solved by SLP. This is done by using a nested approach where the state equations are linearized and sensitivities are calculated by the adjoint method. In order to avoid mesh-dependency the sensitivities are filtered by Sigmund’s filter. The final LP-problem is solved by an interior point method that is available in Matlab. The implementation is done for a general design domain in 2D as well as in 3D by using fully integrated isoparametric elements. The implementation seems to be very efficient and robust.  相似文献   

18.
The gray problem of displacement constrained topology volume minimization under multiple load cases still is an opening topic of research. A series of topologies with clear profiles generated from an optimization process are very beneficial to method engineering applications. In this paper, a novel displacement constrained optimization approach for black and white structural topology designs under multiple load cases, is proposed to obtain a series of topologies with clear profiles. Firstly, a distribution feature of constraint displacement derivatives is investigated. Secondly, an adaptive adjusting approach of design variable bounds is proposed, and an improved approximate model with varied constraint limits and a volume penalty objective function are constructed. Thirdly, an improved density-based optimization method is proposed for the displacement constrained topology volume minimization under multiple load cases. Finally, several examples are given to demonstrate that the results obtained by the proposed method provide a series of topologies with clear profiles during an optimization process. It is concluded from examples that the proposed method is effective and robust for generating an optimal topology.  相似文献   

19.
This paper deals with topology optimization based on the Heaviside projection method using a scalar function as design variables. The scalar function is then regularized by a PDE based filter. Several image-processing based filtering techniques have so far been proposed for regularization or restricting the minimum length scale. They are conventionally applied to the design sensitivities rather than the design variables themselves. However, it causes discrepancies between the filtered sensitivities and the actual sensitivities that may confuse the optimization process and disturb the convergence. In this paper, we propose a Heaviside projection based topology optimization method with a scalar function that is filtered by a Helmholtz type partial differential equation. Therefore, the optimality can be strictly discussed in terms of the KKT condition. In order to demonstrate the effectiveness of the proposed method, a minimum compliance problem is solved.  相似文献   

20.
This work deals with the topological design of vibrating continuum structures. The vibration of continuum structure is excited by time-harmonic external mechanical loading with prescribed frequency and amplitude. In comparison with well-known compliance minimization in static topology optimization, various objective functions are proposed in literature to minimize the response of vibrating structures, such as power flow, vibration transmission, and dynamic compliances, etc. Even for the dynamic compliance, different definitions are found in literature, which have quite different formulations and influences on the optimization results. The aim of this paper is to provide a comparison of these different objective functions and propose reference forms of objective functions for design optimization of vibration problems. Analytical solutions for two degrees of freedom system and topological design of plane structures in numerical examples are compared using different optimization formulations for given various excitation frequencies. The results are obtained by the finite element method and gradient based optimization using analytical sensitivity analysis. The optimized topologies and vibration response of the optimized structures are presented. The influence of excitation frequencies and the eigenfrequencies of the structure are discussed in the numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号