首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel approach was undertaken in producing porous AlN microelectronics tapes with high thermal conductivity and low dielectric constant. This method essentially utilised polymer micro-spherical powders that were used as a sacrificial mould to introduce controlled porosity into the green tapes during pyrolysis. The Al2O3-rich porous green tapes were then reaction sintered at 1680 °C for 12 h to achieve porous AlN tapes. This work builds upon the previously developed novel reaction sintering process that densified and converted Al2O3-rich tapes (Al2O3–20 wt.% AlN–5 wt.% Y2O3) to AlN tapes at a relatively low sintering temperature of 1680 °C. The sintering behaviour of the porous tapes was investigated, and the effects of the microspheres particle size and volume addition were studied. The microspheres successfully contributed to the significant reduction of tape density by porosity, and this contributed to lowering its dielectric constant. Dielectric constant of the AlN tapes were reduced to about 6.8–7.7 whilst thermal conductivity values were reasonable at about 46–60 W/m K. Coefficient of thermal expansion (CTE) values showed a linear trend according to phase composition, with the porous AlN tapes exhibiting CTE values of (4.4–4.8)×10−6 °C−1, showing good CTE compatibility with silicon, at 4.0×10−6 °C−1. The added porosity did not significantly affect the CTE values.  相似文献   

2.
Optical constants of neat cis- and trans-(CH)x and (CD)x films are determined by measuring infrared, visible and ultraviolet spectra of the film and its thickness directly. The absorption coefficient of cis-(CH)x at the absorption maximum 18 500 cm−1 was (1.5 ± 0.1) × 105 cm−1 and that of trans-(CH)x at 15 500 cm−1 was 1.5 × 105 cm−1. The same values as those of (CH)x were obtained for (CD)x. The refractive indices and dielectric constants of cis- and trans-(CH)x were calculated based on absorptionvspectral data.  相似文献   

3.
For the first time, electrochemically deposited poly(3-methylthiophene) and chemically produced poly(3-methylthiophene) and poly(3-phenoxymethylthiophene) have been employed as top electrical contact on porous silicon light-emitting devices. The polymer-capped devices emitted white light as opposed to the uncapped devices, which emitted orange colour. The polymer-capped devices show much higher rectification ratio (up to 1×105) as opposed to 1×103 for the uncapped devices at ±10 V. The polymer-capped devices show 103–104-fold improvement in the luminous efficiency over the uncapped devices. Electrochemically deposited poly(3-methylthiophene) top contacts give a luminous efficiency of 8×10−5 lm W−1 as opposed to 3×10−9 lm W−1 obtained from uncapped devices. All the devices were found to fit the space charge limited current model.  相似文献   

4.
AlSiCp (65 vol.% SiC) electronic packaging materials were manufactured by powder injection molding (PIM) and pressure infiltration process in order to obtain near net-shaped parts. SiCp preformed compacts obtained by pre-sintering process at 1150 K have high strength and good appearance, and the ratio of open porosity to total porosiry is nearly 98%. The relative density of composites is bigger than 99%. The thermal conductivity of AlSiCp composites fabricated by this method is 198 W·m-1·K-1, and the coefficient of thermal expansion (CTE) is 8.0 × 10-6/K (298 K).  相似文献   

5.
The integral enthalpy of formation of the Sm---Pb and Sm---Sn melts at 1203 K, hf, was determined by direct reaction calorimetry (drop method) in the Pb and Sn rich sides with the help of a high-temperature Tian-Calvet calorimeter. The results can be fitted respectively with reference to the mole fraction of samarium, x, as follows:
hf/kJ mol−1=x(1−x)(−109.8−372.0.7x) with0> XSm >0.27
and
hf/kJ mol−1=x(1−x)(−277.0−105.4.x) with0> XSm >0.27
for the Sm---Pb and Sm---Sn melts respectively. They yield the following partial enthalpies of samarium at infinite dilution: −109.8 and −277.0 kJ mol−1 respectively.

Such negative values suggest the existence of a strong short-range order in the liquid state. The stoichiometry and the thermal stability of these associations needs additional thermodynamic determinations concerning mainly the free enthalpy of formation. It will be determined by Knudsen-effusion combined with mass spetrometry in a further work.  相似文献   


6.
Thin films of polyimide (PI) were fabricated by a vapor deposition polymerization method (VDPM) and studied for their insulator characteristics in semiconductor devices. Polyamic acid (PAA) thin films fabricated by vapor deposition polymerization (VDP) from PMDA (pyromellitic dianhydride) and DDE (4,4′-diaminodiphenyl ether) were converted to PI thin films by thermal curing. The appropriate curing temperature was 300 °C. From TG-DTA (Thermo Gravimetry-Differential Thermal Analysis), the PI thin films can endure 230 °C for 20 000 h. They exhibited a relative permittivity of 3.9–3.5 and a dissipation loss factor of 0.008 at frequency of 10 kHz in the temperature range from 25 to 200 °C. The resistivity was approximately 3.2×1015 Ωcm and the dielectric breakdown strength was 4.61 MV/cm.  相似文献   

7.
Thin films of tetragonal bismuth ferrite–lead titanate (1 − x)BiFeO3xPbTiO3 with x = 0.9–0.7 were prepared by pulsed laser deposition (PLD). The films exhibit a dense columnar grain growth. XRD analysis reveals that the films have a perovskite structure and exhibit a preferred (1 1 1) texture. The film microstructure was studied using SEM. The ferroelectric properties of the films are discussed in the light of polarization-field hysteresis behaviour and impedance spectroscopy. The remanent polarization values ranged between 2Pr  45 and 60 μC cm−2 at a field amplitude of 500 kV cm−1 and −10 °C, while the dielectric permittivity of the films ranged between 375 and 1096 at a frequency of 2 kHz.  相似文献   

8.
Structural transformation and ionic transport properties are investigated on wet-chemically synthesized La1−xMnO3 (x=0.0–0.18) compositions. Powders annealed in oxygen/air at 1000–1080 K exhibit cubic symmetry and transform to rhombohedral on annealing at 1173–1573 K in air/oxygen. Annealing above 1773 K in air or in argon/helium at 1473 K stabilized distorted rhombohedral or orthorhombic symmetry. Structural transformations are confirmed from XRD and TEM studies. The total conductivity of sintered disks, measured by four-probe technique, ranges from 5 S cm−1 at 298 K to 105 S cm−1 at 1273 K. The ionic conductivity measured by blocking electrode technique ranges from 1.0×10−6 S cm−1 at 700 K to 2.0×10−3 S cm−1 at 1273 K. The ionic transference number of these compositions ranges from 3.0×10−5 to 5.0×10−5 at 1273 K. The activation energy deduced from experimental data for ionic conduction and ionic migration is 1.03–1.10 and 0.80–1.00 eV, respectively. The activation energy of formation, association and migration of vacancies ranges from 1.07 to 1.44 eV.  相似文献   

9.
Superplastic behavior of a 7055 aluminum alloy   总被引:1,自引:0,他引:1  
It is shown that a high strength 7055 aluminum alloy with partially recrystallized initial structure exhibits superplastic behavior in the temperature interval 400–490 °C within a wide strain rate range from 8.3×10−5 to 3.3×10−2 s−1. Maximum total elongation of about 960% and strain rate sensitivity coefficient, m, of 0.6 were obtained at a temperature of 450 °C and a strain rate of 3.3×10−4 s−1.  相似文献   

10.
Thin films (thickness 40 to 250 nm) of Al on microstructurized Si substrates have been investigated by the vibrating-reed technique (typical frequencies 100 Hz to 10 kHz) with strain amplitudes in the range of 10−7 to 10−4 and for temperatures up to 850 K. The combined evaluation of flexural and torsional vibrations permits to separate the complex shear modulus and biaxial modulus of the thin layer, which helps to identify the damping mechanisms. For Al thin films with thickness <200 nm, in addition to the well-known damping peak due to grain boundary sliding (peak temperature about 370 K), a further maximum of damping has been observed around 600 K, the nature of which is discussed.  相似文献   

11.
In this paper we report on the characterization of predominantly single phase, fully dense Ti2InC (Ti1.96InC1.15), Hf2InC (Hf1.94InC1.26) and (Ti,Hf)2InC ((Ti0.47,Hf0.56)2InC1.26) samples produced by reactive hot isostatic pressing of the elemental powders. The a and c lattice parameters in nm, were, respectively: 0.3134; 1.4077 for Ti2InC; 0.322, 1.443 for (Ti,Hf)2InC; and 0.331 and 1.472 for Hf2InC. The heat capacities, thermal expansion coefficients, thermal and electrical conductivities were measured as a function of temperature. These ternaries are good electrical conductors with a resistivity that increases linearly with increasing temperatures. At 0.28 μΩ m, the room temperature resistivity of (Ti,Hf)2InC is higher than the end members (0.2 μΩ m), indicating a solid solution scattering effect. In the 300 to 1273 K temperature range the thermal expansion coefficients are: 7.6×10−6 K−1 for Hf2InC, 9.5×10−6 K−1 for Ti2InC, and 8.6×10−6 K−1 for (Ti,Hf)2InC. They are all good conductors of heat (20 to 26 W/m K) with the electronic component of conductivity dominating at all temperatures. Extended exposure of Ti2InC to vacuum (10−4 atm) at 800 °C, results in the selective sublimation of In, and the conversion of Ti2InC to TiCx.  相似文献   

12.
Polymeric solid electrolyte films containing rare earth metal ions (Ce3+, La3+, Yb3+) have been prepared, with a view to applying them to solid-state electrochemical devices. The films, composed of poly(ethylene oxide)-grafted poly(methylmethacrylate) (PEO–PMMA), were prepared by dissolving rare earth salts with appropriate amounts of poly(ethylene glycol) dimethyl ether (PEG) that have ethylene oxide units in their structure. The ionic conductance behaviour of the polymeric composite electrolyte systems was investigated by AC impedance and DC polarization methods in an ambient temperature range. The oligo(ethylene oxide) units in the polymer matrix and the PEG components ensured the dissociation of the salts and the high mobility of the resulting ionic species in the solid films. About 10−5 S cm−1 or above of ionic conductivity was obtained for a PEO–PMMA/PEG/Ce(ClO4)3 system at room temperature. The addition of a liquid plasticizer in the composite improved the conductivity by about two orders of magnitude.  相似文献   

13.
The electrical resistivity, Seebeck coefficient, and thermal conductivity of Nd2(Cu0.98M0.02)O4 (M: Ni and Zn) have been measured in the temperature range from room temperature to about 1000 K. Ni- and Zn-doping decreases the electrical resistivity and the absolute values of the Seebeck coefficient. The thermal conductivity decreases with increasing temperature, showing phonon conduction, and also decreases by doping. The power factor of Nd2(Cu0.98Ni0.02)O4 reaches 1.02×10−4 W m−1 K−2 and the figure of merit is 1.35×10−5 K−1 at 320 K. The relatively low figure of merit compared with that of the state-of-the-art thermoelectric materials is due to the high thermal conductivity.  相似文献   

14.
In this communication, we report on the bulk and lattice thermal expansion studies on a number of compounds, within the homogeneity range of solid solutions, in a series with the general composition Ce1−xSrxO2−x (0.0≤x≤0.10). The XRD pattern of each product was refined to determine the solid solubility of SrO into the lattice of CeO2, and the homogeneity range. The composition with maximum solid solubility limit of SrO in CeO2 lattice, under the slow cooled conditions, was delineated as Ce0.91Sr0.09O1.91 (i.e. 9 mol.% of SrO). The bulk thermal expansion measurements from ambient to 1123 K, as investigated by a dilatometer, revealed that the l (293 to 1123 K) values for the compositions within the homogeneity range increase from 11.58×10−6 to 12.13×10−6 K−1 on increasing the Sr2+ content from 0 mol.% (i.e. CeO2) to 9 mol.%, i.e. the upper solubility limit of SrO into the lattice of CeO2. A similar trend was observed in the lattice thermal expansion coefficients a (293 to 1473 K) as obtained by a high temperature-XRD.  相似文献   

15.
The absorption spectrum of (η8-COT)Nd[HB(3,5-Me2pz)3] (COT=cyclooctatetraenyl, pz=pyrazol-1-yl) has been measured at room temperature, at approximately 90 K and in parts at ca. 30 K. The bands were assigned by applying the selection rules for C8v symmetry and by performing crystal field (CF) calculations assuming the CF parameters of the Nd complex were the same as for the previously analyzed (COT)Pr[HB(3,5-Me2pz)3]. The parameters of an empirical Hamiltonian were fitted to the energies of 27 levels to give an r.m.s. deviation of 25.5 cm−1. Neglecting the influence of [HB(3,5-Me2pz)3] ligand, the CF strength of the [COT]−− ligand could be estimated from the CF parameters obtained.  相似文献   

16.
Highly conductive transparent aluminium-doped ZnO (ZnO:A1) films were successfully deposited by CW-CO2 laser-induced evaporation. Optimisation of evaporation parameters was based on laser power, substrate temperature, O2 partial pressure in the vacuum chamber and amount of Al in the ZnO source pellet. ZnO:A1 films with an electrical resistivity as low as 6.6 × 10−2Ω·cm and an optical transmission of 80% at 500nm were obtained at laser power of 15 W, substrate temperature of about 200°C, O2 partial pressure of 6—7 × 10−4 Torr and 5wt.% Al. Conductivity of ZnO films can be increased one order via Al-doping in ZnO films. The films obtained by laser-induced evaporation have compared quite favorably with the high quality films obtained by sputtering.  相似文献   

17.
Two sets of Er3+-doped alkaline-free glass systems, MgF2–BaF2–Ba(PO3)2–Al(PO3)3 (MBBA) and Bi(PO3)3–Ba(PO3)2–BaF2–MgF2 (BBBM), have been prepared and investigated with the aim of using them as active media. Radiative lifetimes (τrad) and branching ratios (β) have been obtained for the excited states of Er3+. The absorption spectra were recorded to obtain the intensity parameters (Ωt) which are found to be Ω2 = 4.47 × 10−20 cm2, Ω4 = 1.31 × 10−20 cm2, Ω6 = 0.81 × 10−20 cm2 for the MBBA system and Ω2 = 4.03 × 10−20 cm2, Ω4 = 1.34 × 10−20 cm2, Ω6 = 0.53 × 10−20 for the BBBM system, respectively. The emission cross-section for the 4I13/2 → 4I15/2 transition is determined by the Fuchtbauer–Ladenburg method and found to be 2.35 × 10−20 cm2 and 3.54 × 10−20 cm2 for the MBBA and BBBM system, respectively. Comparison of the measured values to those of Er3+ transitions in other glass hosts suggests that our new glass systems are good candidates for broadband compact optical fiber and waveguide amplifier applications.  相似文献   

18.
F.c.c. solid Co---Pd alloys have been investigated thermodynamically by means of computer-aided Knudsen cell mass spectrometry. Thermodynamic evaluation has been performed by applying the “digital intensity ratio” method. The thermodynamic excess properties can be described algebraically by means of thermodynamically adapted power series with two adjustable parameters, i.e. C1G (−20 810 + 9.608T) J mol−1) and C2G (−30 720 + 6.78T) J mol−1). At 1470 K, f.c.c. solid Co---Pd alloys are characterized by negative molar excess Gibbs energies GE, exothermic molar heats of mixing (HE) and small negative molar excess entropies SE. At 1470 K, the minimum GE value is −4600 J mol−1 (61.9 at.% Pd), the minimum HE value is −9400 J mol−1 (59.5 at.% Pd) and the minimum SE value is −3.3 J mol−1 K−1 (55.9 at.% Pd). The thermodynamic activities of Co show small positive deviations from the ideal case for the Co-rich alloys (xPd < 0.34), and negative deviations from Raoults' law for alloys with higher Pd contents. The Pd activities aPd show negative deviations from the ideal case for all compositions. The phase diagram has been computed by means of a generally applicable procedure for the calculation of the equilibrium compositions of coexisting phases. This was achieved using the results of this work, thermodynamic data from earlier mass spectrometric studies on the liquid phase, and literature data for the heat capacities and enthalpies of Co and Pd.  相似文献   

19.
The formation of cation solid solution in the (La1−xGdx)OCl:Eu3+ (0≤xGd≤1; ΔxGd=0.1) series was studied by photoluminescence spectroscopy. The luminescence from the 5D0–2 to the 7F0–4 levels of the Eu3+ ion in the (La1−xGdx)OCl series was recorded at 77 K by using argon ion laser excitation (457.9 nm). The interpretation of the spectra according to the C4v site symmetry of the Eu3+ ion in the tetragonal PbFCl-type structure yielded nearly complete sets (18 to 19 levels) for the 7F0–4 levels. Simulations of the Stark level schemes were carried out with the aid of a phenomenological c.f. theory utilizing the five non-zero c.f. Bqk parameters (B02, B04, B44, B06 and B46) allowed for the C4v site symmetry. By using the calculated c.f. parameter sets a quantitative measure was obtained to monitor the formation of cation solid solutions. The strength of the c.f. effect was estimated with the c.f. strength parameters S and Sk (k=2, 4 and 6). The c.f. parameter sets reproduced the experimental 7FJ (J=0–4) energy level schemes with the rms deviations between 4 and 11 cm−1. The individual parameters as well as the c.f. strength parameters were found to evolve in a smooth manner indicating complete solid solubility in the (La1−xGdx)OCl series. Some local distortions from the C4v symmetry — probably of long range—leading to the splitting of the 7F1 doubly degenerate E level were observed, however.  相似文献   

20.
The electrical conductivity (σ), Seebeck coefficient (S), and power factor (σS2) of perovskite-type LaFeO3, La1−xSrxFeO3 [0.1 ≤ x ≤ 0.4] and LaFe1−yNiyO3 [0.1 ≤ y ≤ 0.6] were investigated in the temperature range of 300–1100 K to explore their possibility as thermoelectric materials. The electrical conductivity of LaFeO3 showed semiconducting behavior, and its Seebeck coefficient changed from positive to negative around 650 K with increasing temperature. The electrical conductivity of LaFeO3 increased with the substitutions of Sr and Ni atoms, while its Seebeck coefficient decreased. The Seebeck coefficient of La1−xSrxFeO3 was positive, whereas that of LaFe1−yNiyO3 changed from positive to negative with increasing Ni content. The substitutions of Sr and Ni were effective in increasing the power factor of LaFeO3; 0.0053 × 10−4 Wm−1 K−2 for LaFeO3 (1050 K), 1.1 × 10−4 Wm−1 K−2 for La1−xSrxFeO3 (x = 0.1 at 1100 K) and 0.63 × 10−4 Wm−1 K−2 for LaFe1−yNiyO3 (y = 0.1 at 1100 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号