首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A manually operated penetrometer (DMS) fitted with cylindrical (T-bar) and ball penetrometer tips was developed for measuring the profiles of undisturbed and remolded undrained shear strength within box-core samples. This paper summarizes the findings of a series of miniature penetrometer tests and vane shear tests that were carried out on reconstituted clay from a local site in Western Australia. The aim of the tests was to evaluate the potential of the DMS in characterizing the shear strength of seabed surficial sediments. It was found that the DMS gave essentially identical T-bar and ball penetration resistances but these were up to 17% lower than the net cone resistance. From the comparison between the T-bar and ball penetration resistance and the shear strengths measured from vane shear tests, average N factors of 11 and 14 were obtained for intact and fully remolded conditions, respectively. The test results suggest that the DMS is a reliable and efficient means of obtaining intact and remolded shear strength profiles.  相似文献   

2.
In this paper, the effects of penetration rate on cone resistance in saturated clayey soils are investigated. Shear strength rate effects in clayey soils are related to two physical processes: the increase of shear strength with increasing rate of loading and the increase of shear strength as the process transitions from undrained to drained. Special focus is placed on this second effect. Cone penetration tests were performed at various penetration rates both in the field and in a calibration chamber, and the resulting data were analyzed. The field cone penetration tests were performed at two test sites with fairly homogeneous clayey silt and silty clay layers located below the groundwater table. Additionally, tests with both cone and flat-tip penetrometers in sand-clay mixtures were performed in a calibration chamber to investigate the change in drainage conditions from undrained to partially drained and from partially drained to fully drained. A series of flexible-wall permeameter tests were conducted in the laboratory for various clayey sand mixtures prepared at various mixing ratios in order to obtain values of the coefficient of consolidation, which is required to estimate the penetration rates below which penetration is drained and above which penetration is undrained. A correlation between cone resistance and drainage conditions was established based on the results of the calibration chamber and field penetration tests.  相似文献   

3.
The undrained remolded shear strength of soft clays is of importance in geosystem design, particularly for offshore structures. Common methods to estimate remolded shear strength, such as correlations with cone penetration data, direct measurement with an in situ field vane shear device, and laboratory measurements, produce varied results and can be particularly costly and time consuming. Full-flow penetrometers (T-bar and Ball) provide an alternative rapid method to estimate remolded shear strength and soil sensitivity through remolding soil by repeated cycling of the penetrometer up and down over a given depth interval. The cyclic penetration resistance degradation curve inherently contains information regarding remolded strength and sensitivity. The objective of this paper is to assess the ability of full-flow penetrometers to predict remolded strength and soil sensitivity, and to develop a suite of predictive correlations in which these properties can be estimated in the absence of complementary laboratory or in situ test data. To accomplish this, full-flow penetration profiles and cyclic tests were performed at five well characterized soft clay sites, which together represent the broad range of soils in which the penetrometers will be often used. A previously developed model for the reduction in penetration resistance with cycling is modified to predict the entire degradation curve, including the remolded penetration resistance using only measurements obtained during initial penetrometer penetration and extraction. Using field vane shear strength as the reference measurement, correlations are developed to predict soil sensitivity and remolded shear strength based solely on full-flow penetrometer data, which is particularly useful in site investigation programs where site specific data are not yet available or are sparse. Finally, the usefulness of these relationships is demonstrated by implementing them for two additional soft clay sites.  相似文献   

4.
The penetration resistance of a cylindrical T-bar penetrometer in soft clay is affected by features such as anisotropy, high strain rates, and gradual strain-softening during passage of the T-bar. In order to evaluate these effects, a detailed numerical study has been undertaken, comprising: (1) finite-element analysis; and (2) a strain path approach within the upper bound plasticity mechanism. These studies showed that the T-bar factor is relatively insensitive to the degree of strength anisotropy, provided the penetration resistance is normalized by the average shear strength. Strain rates were found to be six or seven orders of magnitude greater than typical laboratory testing rates, and about three orders of magnitude higher than in a standard vane test. However, the effect of high strain rates is partly compensated by remolding of the soil, where average strains of 400% are imposed on the soil. Charts are presented showing how the separate effects of high strain rates and partial softening may be combined to derive a T-bar factor for a given soil. The paper concludes with a discussion of the measurement of remolded shear strength using cyclic T-bar tests, and interpretation of the T-bar resistance in fully remolded soil.  相似文献   

5.
Effect of Penetration Rate on Penetrometer Resistance in Clay   总被引:1,自引:0,他引:1  
This paper discusses the effects of penetration rate on the penetration resistance in soft clay for various shaped penetrometers (cone, T-bar, ball, and plate) and for T-bars with different aspect ratios. Constant rate (“normal”) and variable rate (“twitch”) penetration tests, where the penetration rate was successively halved over eight steps with the penetrometer advanced by one or two diameters in each step, were undertaken in the beam centrifuge at the University of Western Australia. The tests were conducted on samples reconstituted from clay collected from the Burswood site in Western Australia. The twitch tests showed higher penetration resistance than the corresponding normal tests after the penetration rate had been reduced by a factor of 16 due to cumulative effects of partial consolidation. The penetration rate at which the resistance started to increase due to partial consolidation was used to estimate the consolidation coefficient, cv, of the reconstituted clay. The interpreted cv values were similar to values estimated from other consolidation data, both in the centrifuge and from laboratory Rowe cell and constant rate of strain consolidation tests. In addition, results from in situ twitch tests at the Burswood site were examined to evaluate viscous effects on the penetration resistance.  相似文献   

6.
Full-flow penetrometers (the T-bar and ball) are increasingly used on sites with thick deposits of soft clays, particularly prevalent offshore. Full-flow penetration tests were performed at five international well-characterized soft clay test sites to assess the use of full-flow penetrometers to estimate undrained shear strength. Field vane shear data were used as the reference undrained strength. Statistical analyses of strength factors indicates that full-flow penetrometers provide an estimate of undrained shear strength at a similar level of reliability compared to the piezocone. Relationships for estimating the strength factor and soil sensitivity using only full-flow penetrometer data obtained during initial penetration and extraction are developed. A strong dependence of the strength factor on sensitivity was identified and can be used for the estimation of undrained strength. The effectiveness and use of the developed correlations are demonstrated through their application at an additional test site.  相似文献   

7.
An elastoplastic, finite-strain, coupled theory of mixtures in an updated Lagrangian reference frame is applied to the piezocone penetration test to estimate the hydraulic conductivity of the soil via analysis of the steady-state excess pore pressure generated during piezocone penetration. The results of this approach were compared with piezocone penetration test data. It showed that reliable hydraulic conductivities can be estimated conveniently without performing pore pressure dissipation tests. This study also shows that the change in the dimensionless excess pore pressure (excess pore pressure is normalized by the effective overburden pressure) at the cone tip is almost constant when the dimensionless hydraulic conductivity (hydraulic conductivity is normalized by the penetration speed and cone radius, hereafter called DLHC) is less than 10?7 or greater than 10?4. It is also shown that the drainage condition around the cone tip is close to a fully undrained condition when the DLHC of the soil is less than 10?7, while it is close to a fully drained condition when the DLHC of the soil is greater than 10?4.  相似文献   

8.
Detailed profiles of hydraulic conductivity are recovered from the deployment of direct-push permeameters at the Geohydrologic Experimental and Monitoring Site, Kansas. Measurements with thin tapered tips, and with standard cone penetration test (uCPT) tips, show only minor differences, suggesting that tip-local disturbance effects are small, and that routine uCPT measurements are therefore representative of pristine conditions. Permeameter measurements are correlated against closely deployed uCPT measurements, estimates of hydraulic conductivity from uCPT sounding correlations, and from grain size correlations derived from both vision CPT (VisCPT) and from cone metrics. On-the-fly evaluations of hydraulic conductivity require that the tip-local pressure field is both steady and partially drained. Continuous penetration is shown to yield pore pressures sufficiently close to steady to enable conductivities to be directly determined. Cone metrics of cone resistance, sleeve friction, and pore pressure ratio are shown to be sufficient to discriminate between partially drained and undrained behavior, and therefore to define the permissible regime where conductivities may be determined from uCPT sounding data. Estimates of hydraulic conductivities from uCPT sounding data are shown to correlate with independently measured magnitudes of hydraulic conductivity recovered using the permeameter tests. However, most of hydraulic conductivities from the permeameter tests (4.5?cm length screen) are underpredicted, suggesting that storage effects, the inability to reach a steady state, or the effects of dilation may influence the response. Profiles of hydraulic conductivities evaluated from the on-the-fly method also correlate well with the permeameter measurements. Predictions from soil classification and from VisCPT methods are also capable of estimating conductivities, with soil classifications giving the closest correlations of these two for this particular suite of data.  相似文献   

9.
A procedure for estimating the undrained stress-strain behavior of sand from drained self-boring pressuremeter and seismic piezocone penetration tests is proposed in this paper. The procedure offers an inexpensive alternative to laboratory testing and avoids the uncertainty of the empirical methods based on index measurements such as the Standard Penetration Test blow count and the tip resistance in a Piezocone Penetration Test (CPTU). To check its validity, the proposed procedure was used to infer the undrained triaxial stress-strain curves and the results were compared with laboratory triaxial tests on undisturbed samples. The undrained limit equilibrium stability of a dike was also assessed using the inferred stress-strain behavior to illustrate the usefulness of the procedure. The result of the stability analysis was found to be in qualitative agreement with the observed performance of the dike during a recent field experiment attempting to trigger static liquefaction.  相似文献   

10.
Pipelines and risers form an essential part of the infrastructure associated with offshore oil and gas facilities. During installation and operation, these structures are subjected to repetitive motions which can cause the surrounding seabed soil to be remolded and soften. This disturbance leads to significant changes in the operative shear strength, which must be assessed in design. This paper presents an analytical framework that aims to quantify the degradation in undrained shear strength as a result of gross disturbance—in this case through repeated vertical movement of a cylindrical object embedded in undrained soil. The parameters of the framework were calibrated using data obtained in a geotechnical centrifuge test. In this test a T-bar penetrometer, which is a cylindrical tool used to characterize the strength of soft soil, was cycled vertically in soil with strength characteristics typical of a deep water seabed. Using simple assumptions regarding the spatial distribution of “damage” resulting from movement of the cylinder, and by linking this damage to the changing undrained shear strength via a simple degradation model, the framework is shown to simulate well the behavior observed in a cyclic T-bar test. This framework can potentially be extended to the similar near-surface behavior associated with seabed pipelines and risers.  相似文献   

11.
A solution is developed for the buildup, steady, and postarrest dissipative pore fluid pressure fields that develop around a conical penetrometer that self-embeds from free-fall into the seabed. Arrest from free-fall considers deceleration under undrained conditions in a purely cohesive soil, with constant shear strength with depth. The resulting decelerating velocity field is controlled by soil strength, bearing capacity factors, and inertial components. At low impact velocities the embedment process is controlled by soil strength, and at high velocities by inertia. With the deceleration defined, the solution for a point normal dislocation migrating in a poroelastic medium is extended to incorporate the influence of a tapered tip. Dynamic steady pressures, PD, develop relative to the penetrating tip geometry with their distribution conditioned by the nondimensional penetration rate, UD, incorporating impacting penetration rate, consolidation coefficient, and penetrometer radius, and the nondimensional strength, ND, additionally incorporating undrained shear strength of the sediment. Pore pressures may develop to a steady peak magnitude at the penetrometer tip, and drop as PD = 1/xD with distance xD behind the tip and along the shaft. Induced pore pressures are singular in the zone of tip taper for the assumed zero radius of the penetrometer, negating the direct evaluation of permeability magnitudes from pressures recorded on the cone face. However, peak induced pressure magnitudes may be correlated with sediment permeabilities, postarrest dissipation rates may be correlated with consolidation coefficients, and depths of penetration may be correlated with shear strengths. The magnitudes of fluid pressures evaluated on the shaft may be correlated with sharp penetrometer data (reported by Urgeles et al. in 2000) to independently evaluate magnitudes of strength and transport parameters.  相似文献   

12.
Since different undrained shear strengths may be obtained from different laboratory or field tests, different cone factors are needed to calculate the undrained shear strengths from the results of a piezocone test in clay. Based on the anisotropic undrained shear strength criterion, a set of cone factors for calculating undrained shear strength is proposed in this paper. These cone factors are interrelated with each other in terms of the strength anisotropy ratio of the clay. The suitability of the proposed cone factors has been verified using the test results generated from different tests and from clays with different origins. By comparing with the cone factor for isotropic clay, it was found that the effect of strength anisotropy on the cone factor is not always significant. In fact, the effect of strength anisotropy becomes significant only in lightly overconsolidated to normally consolidated clay with moderate to high strength anisotropy. Furthermore, the maximum difference in cone factor is not expected to exceed 20% with or without taking into account the strength anisotropy of clay.  相似文献   

13.
The need for obtaining estimates of undrained shear strength of shallow seafloor sediments often arises in offshore engineering practice. Impact penetrometers offer a promising means of obtaining strength estimates in such sediments. However, variable conditions of embedment and velocity require careful consideration in the interpretation of impact penetration tests. This paper presents an analysis of the expendable bottom penetrometer (XBP), a device that measures acceleration during impact penetration. The analyses indicate that acceleration measurements can be reasonably related to undrained shear strength of soft clays. Further, acceleration measurements can be integrated to obtain velocity and embedment depth data at any point during the penetration analysis, thereby providing a basis for accounting for rate and embedment effects. Applying the proposed analysis to data from a series of test sites in the Gulf of Mexico indicate satisfactory agreement between XBP and reference strength profiles in soft clays.  相似文献   

14.
A solution is developed for the evolution of buildup, steady, and postarrest dissipative pore-fluid pressure fields that develop around a finite-radius conical penetrometer advanced in a saturated linearly elastic porous medium. The analog with cone penetrometer testing is direct and is used to enable continuous distributions of permeability and diffusivity to be determined with depth. This analysis reveals the direct dependence of penetration rate on the induced fluid pressure field magnitudes, and predicts that a penetration rate threshold limit exists with respect to pore-pressure generation. This represents the essence of a partially drained system. The developed pore-pressure field is determined to be a function of the dissipation rate of the material, the penetration rate, and the storage effects of the advecting medium. Analysis of the pore-pressure field under start-up conditions reveals that the time required to reach steady state is strongly influenced by the penetration rate and the pressure-dissipation properties of the material. Analysis of the developed stable pressure fields illustrates the inversely proportional relationship that exists between penetration rate and pore-pressure magnitudes at the cone surface; representing the influence of storage in the medium on stable pore-pressure magnitudes. Stable pressure fields below the penetration threshold limit, UD ? 10?1, form a spherical response around the cone tip transitioning to an elongated radial response for penetration rates above this limit. Postarrest analysis indicates that the prearrest penetration rate strongly influences the dissipation rate and pattern of dissipation. The developed analysis can be correlated with CPTu-recovered data to independently evaluate permeability magnitudes during steady penetration.  相似文献   

15.
Modern methods for designing drilled shafts in soft rock require knowledge of the compressive strength and modulus of the rock. However, rock jointing at many sites prohibits the recovery of samples of sufficient length and integrity to test rock cores in either unconfined or triaxial compression tests. Since rational design procedures usually require values of compressive strength, surrogate methods must be employed to estimate the compressive strength of the rock. The surrogate methods considered in this study was Texas cone penetrometer tests, and performed at several sites in North Central Texas. In order to develop the relationships between Texas cone penetrations and side and base resistances of rock socketed drilled shafts, three field load tests were conducted. Based on the field study and literature reviews, a relationship between Texas cone penetration tests and axial resistances of rock socketed drilled shafts was proposed.  相似文献   

16.
There is considerable uncertainty in the determination of effective stress strength parameters of cemented soils from undrained triaxial tests. Large negative excess pore pressures are generated at relatively large strains (typically 4–5% for cemented silty sand) in isotropically consolidated undrained (CIU) tests, which results in gas coming out of solution during shear and significant variability in the measured peak deviator stress. In this study, different failure criteria for weakly cemented sands were evaluated based on the results of CIU and isotropically consolidated drained triaxial compression tests conducted on samples of artificially cemented sand. The use of = 0 as a failure criterion eliminates the variability between the undrained tests and also ensures that the mobilized failure strength is not based on the highly variable negative excess pore pressures. In addition, the resulting strains to failure are comparable to the strains to failure for the drained tests. Mohr-Coulomb strength parameters thus estimated from the undrained tests are generally lower than strength parameters obtained from drained tests, and the difference between the failure envelopes from undrained tests increases as the level of cementation increases. This divergence is attributed to differences in the stiffness of the cemented soil under the different loading conditions. The stiffness under undrained loading conditions decreases with increasing cementation due to an increase in the generation of positive excess pore pressure at low strains.  相似文献   

17.
Analysis of Steady Cone Penetration in Clay   总被引:1,自引:0,他引:1  
In this paper, a novel finite-element procedure is used to analyze steady cone penetration in soils. Although the procedure is, in principle, applicable to clay and sand with any plasticity model, this paper is only concerned with steady cone penetration in undrained clay. The steady-state finite-element analysis focuses on the total displacements experienced by soil particles at a particular instant in time during the cone penetration test. This is possible because, with the steady-state assumption, the time dependence of stresses and strains can be expressed as a space dependence in the penetration direction. As a result, the finite-element solution of steady cone penetration can be obtained in one step. When compared with the strain path method, the present finite-element procedure offers the following advantages: (1) All equations of soil equilibrium are fully accounted for; (2) cone and shaft roughness can be taken into account in a more rigorous manner and, as a result, the sleeve friction ratio can be properly predicted; and (3) the finite-element procedure can be more easily adapted to analyze cone penetration in dilatant soils.  相似文献   

18.
Cyclic loading has been known to induce fluid flow and thus mechanotransduction in bones. In the past, four-point bending tests have been used exclusively in studying fluid flow in bones. In order to better understand the mechanism of deformation and fluid flow under loading, compression tests were done on trabecular bone specimens under drained and undrained conditions. In the drained tests, the volume change was observed, whereas in the undrained tests, excess pore fluid pressure was measured. Cyclic loading tests were conducted in addition to monotonic loading tests to observe the permanent volume change or excess pore fluid pressure with loading cycles. A fast loading rate gave a sharp rise in the excess fluid pressure compared to a slow loading rate. The strength and stiffness of the specimens appeared to deteriorate with an increased speed of loadings, but there was no appreciable difference between the results obtained from drained and undrained tests. The drained and undrained tests as described allowed a better understanding of bone behavior under loadings for a coupled stress-flow analysis.  相似文献   

19.
Four crushed glass (CG) and dredged material (DM) [(CG-DM)] blend embankments constructed (2004) and reconstructed (2005) to local DOT specifications were subjected to cone penetrometer tests (CPT). The CPT resistance of the original set of embankments was evaluated shortly after construction and approximately 360?days later, immediately prior to being demolished for purposes of a second study. Cone tip resistances were observed to double to triple with aging. For the 80/20 CG-DM blend, a 4?MPa [40 tons per square foot (tsf)] or threefold increase in CPT tip resistance was measured. Likewise, isotropically consolidated, undrained triaxial shear tests were performed on relatively undisturbed thin-walled tube specimens of the 360-day aged CG-DM blend materials. The triaxial tests revealed that the effective friction angles of the aged materials increased by up to 8° over freshly prepared laboratory CG-DM blend specimens. The strength gains appeared to be more strongly linked to (amorphous) silica cementation rather than the formation of carbonates. Disturbance (demolition and reconstruction) generally reduced the in situ CPT behavior to that of the originally constructed embankments.  相似文献   

20.
This paper describes the use of a soil minipenetrometer (SMP) to determine the strength and index properties of fine-grained soils. The SMP has been developed to allow both fall cone and quasi-static penetration tests to be performed. Displacement controlled quasi-static penetration tests can be used for the direct measurement of undrained shear strength, both for remolded and undisturbed samples. In addition the quasi-static penetration test can be used to define an additional lower plastic limit parameter, the PL100, which represents the moisture content of a fine-grained soil with an undrained strength 100 times that at the liquid limit. This approach offers the advantage that removal of the coarse fraction is not required to estimate the PL100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号