首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses the development of a framework for classifying soil using normalized piezocone test (CPTU) data from the corrected tip resistance (qt) and penetration pore-water pressure at the shoulder (u2). Parametric studies for normalized cone tip resistance (Q = qcnet/σv0′) and normalized excess pressures (Δu2/σv0′) as a function of overconsolidation ratio (OCR = σvy′/σv0′) during undrained penetration are combined with piezocone data from clay sites, as well as results from relatively uniform thick deposits of sands, silts, and varietal clays from around the globe. The study focuses on separating the influence of yield stress ratio from that of partial consolidation on normalized CPTU parameters, which both tend to increase Q and decrease the pore pressure parameter (Bq = Δu2/qcnet). The resulting recommended classification chart is significantly different from existing charts, and implies that assessment of data in Q–Δu2/σv0′ space is superior to Q–Bq space when evaluating piezocone data for a range of soil types. Still, there are zones of overlap for silty soils and heavily overconsolidated clays, thus requiring that supplementary information to Q and Δu2/σv0′ be obtained in unfamiliar geologies, including variable rate penetration tests, dissipation tests, CPT friction ratio, or soil sampling.  相似文献   

2.
In this paper, the effects of penetration rate on cone resistance in saturated clayey soils are investigated. Shear strength rate effects in clayey soils are related to two physical processes: the increase of shear strength with increasing rate of loading and the increase of shear strength as the process transitions from undrained to drained. Special focus is placed on this second effect. Cone penetration tests were performed at various penetration rates both in the field and in a calibration chamber, and the resulting data were analyzed. The field cone penetration tests were performed at two test sites with fairly homogeneous clayey silt and silty clay layers located below the groundwater table. Additionally, tests with both cone and flat-tip penetrometers in sand-clay mixtures were performed in a calibration chamber to investigate the change in drainage conditions from undrained to partially drained and from partially drained to fully drained. A series of flexible-wall permeameter tests were conducted in the laboratory for various clayey sand mixtures prepared at various mixing ratios in order to obtain values of the coefficient of consolidation, which is required to estimate the penetration rates below which penetration is drained and above which penetration is undrained. A correlation between cone resistance and drainage conditions was established based on the results of the calibration chamber and field penetration tests.  相似文献   

3.
The undrained remolded shear strength of soft clays is of importance in geosystem design, particularly for offshore structures. Common methods to estimate remolded shear strength, such as correlations with cone penetration data, direct measurement with an in situ field vane shear device, and laboratory measurements, produce varied results and can be particularly costly and time consuming. Full-flow penetrometers (T-bar and Ball) provide an alternative rapid method to estimate remolded shear strength and soil sensitivity through remolding soil by repeated cycling of the penetrometer up and down over a given depth interval. The cyclic penetration resistance degradation curve inherently contains information regarding remolded strength and sensitivity. The objective of this paper is to assess the ability of full-flow penetrometers to predict remolded strength and soil sensitivity, and to develop a suite of predictive correlations in which these properties can be estimated in the absence of complementary laboratory or in situ test data. To accomplish this, full-flow penetration profiles and cyclic tests were performed at five well characterized soft clay sites, which together represent the broad range of soils in which the penetrometers will be often used. A previously developed model for the reduction in penetration resistance with cycling is modified to predict the entire degradation curve, including the remolded penetration resistance using only measurements obtained during initial penetrometer penetration and extraction. Using field vane shear strength as the reference measurement, correlations are developed to predict soil sensitivity and remolded shear strength based solely on full-flow penetrometer data, which is particularly useful in site investigation programs where site specific data are not yet available or are sparse. Finally, the usefulness of these relationships is demonstrated by implementing them for two additional soft clay sites.  相似文献   

4.
The results of 167 full-scale field load tests were used to examine several issues related to the load-displacement behavior of footings in cohesionless soils under axial compression loading, including (1) method to interpret the “failure load” from the load-settlement curves; (2) correlations among interpreted loads and settlements; and (3) generalized load-settlement behavior. The L1-L2 method was found to be more appropriate than the “tangent intersection” and “10% of the footing width” methods for interpreting the failure load. The interpreted loads and displacements indicate that footing load-settlement behavior is less elastic and more nonlinear than that of drilled foundations. The results show that the footing behavior will be beyond the elastic limit for designs where a traditional factor of safety between 2 and 3 is used. A normalized curve was developed by approximating the load-settlement curve for each load test in the database by hyperbolic fitting, and the uncertainty in this curve was quantified. This normalized curve can be used in footing design that considers capacity and settlement together. Where possible or warranted, the normalized curve can be subdivided as a function of initial soil modulus.  相似文献   

5.
Effects of Nonplastic Fines on the Liquefaction Resistance of Sands   总被引:5,自引:0,他引:5  
A laboratory parametric study utilizing cyclic triaxial tests was performed to clarify the effects of nonplastic fines on the liquefaction susceptibility of sands. Studies previously published in the literature have reported what appear to be conflicting results as to the effects of silt content on the liquefaction susceptibility of sandy soils. The current study has shown that if the soil structure is composed of silt particles contained within a sand matrix, the resistance to liquefaction of the soil is controlled by the relative density of the soil and is independent of the silt content of the soil. For soils whose structure is composed of sand particles suspended within a silt matrix, the resistance to liquefaction is again controlled by the relative density of the soil, but is lower than for soils with sand-dominated matrices at similar relative densities. In this case, the resistance to liquefaction is essentially independent of the amount and type of sand. These findings suggest the need for further evaluation of the effects of nonplastic fines content upon penetration resistance, and the manner in which this relationship affects the simplified methods currently used in engineering practice to evaluate the liquefaction resistance of silty soils.  相似文献   

6.
Sand compaction pile (SCP) is a ground improvement technique extensively used to ameliorate liquefaction resistance of loose sand deposits. This paper discusses results of laboratory tests on high-quality undisturbed samples obtained by the in situ freezing method at six sites where foundation soils had been improved with SCP. Inspection of samples revealed that the improved ground was desaturated during the ground improvement. Degree of saturation (Sr) was lower than 77% for the sand piles and 91% for the improved sand layers, while Sr was approximately 100% for improved clayey and silty soils. A good correlation was found between Sr and 5% diameter of the soil; the larger 5% diameter of soils (D5), the lower the degree of saturation. It appeared that the variation of Sr with D5 for soils within a month after the ground improvement work was quite similar in trend to that after more than several years. Degree of saturation of soils after several years was noticeably, but not significantly, higher as compared with that shortly after ground improvement, indicating longevity of air bubbles injected in the improved soil. Undrained cyclic shear tests were also carried out on saturated and unsaturated specimens and effects of desaturation on undrained cyclic shear strength were studied. The test results were summarized in a form of liquefaction resistance with reference to normalized standard penetration test N-value.  相似文献   

7.
Due to lack of soil sampling during conventional cone penetration testing, it is necessary to characterize and classify soils based on tip and sleeve friction values as well as pore pressure induced during and after penetration. Currently available semiempirical methods exhibit a significant variability in the estimation of soil type. Within the confines of this paper it is attempted to present a new probabilistic cone penetration test (CPT)-based soil characterization and classification methodology, which addresses the uncertainties intrinsic to the problem. For this purpose, a database composed of normalized corrected cone tip resistance (qt,1,net), normalized friction ratio (FR), fines content (FC), liquid limit (LL), plasticity index (PI), and soil type based on the unified soil classification system was complied. Soil classification was performed by laboratory testing of the standard penetration test disturbed samples retrieved from the boreholes within mostly 2?m of each CPT hole. The resulting database was probabilistically assessed through Bayesian updating methodology allowing full and consistent representation of relevant uncertainties, including (1) model imperfection; (2) statistical uncertainty; and (3) inherent variability. As a conclusion, different sets of FC, LL, PI, and A-line boundary curves along with a new CPT-based, simplified soil classification scheme are proposed in the qt,1,net and FR domain. Probabilistic uses of the proposed models are illustrated through a set of illustrative examples.  相似文献   

8.
The penetration resistance of a cylindrical T-bar penetrometer in soft clay is affected by features such as anisotropy, high strain rates, and gradual strain-softening during passage of the T-bar. In order to evaluate these effects, a detailed numerical study has been undertaken, comprising: (1) finite-element analysis; and (2) a strain path approach within the upper bound plasticity mechanism. These studies showed that the T-bar factor is relatively insensitive to the degree of strength anisotropy, provided the penetration resistance is normalized by the average shear strength. Strain rates were found to be six or seven orders of magnitude greater than typical laboratory testing rates, and about three orders of magnitude higher than in a standard vane test. However, the effect of high strain rates is partly compensated by remolding of the soil, where average strains of 400% are imposed on the soil. Charts are presented showing how the separate effects of high strain rates and partial softening may be combined to derive a T-bar factor for a given soil. The paper concludes with a discussion of the measurement of remolded shear strength using cyclic T-bar tests, and interpretation of the T-bar resistance in fully remolded soil.  相似文献   

9.
Passive Earth Pressure Mobilization during Cyclic Loading   总被引:1,自引:0,他引:1  
The passive resistance measured in a series of full-scale tests on a pile cap is compared with existing theories. Four different soils were selected as backfill in front of the pile cap and the load-deflection relationships under cyclic loading were investigated. The log spiral theory provided the best agreement with the measured passive resistance. The Rankine theory significantly underestimated the passive force, while the Coulomb theory generally overestimated the resistance. The displacement necessary to mobilize the maximum passive force was compared with previous model and full-scale tests and ranged from 3.0 to 5.2% of the cap height. A hyperbolic model provided the best agreement with the measured backbone passive resistance curve compared with recommendations given by Caltrans and the U.S. Navy. However, this model overestimated the passive resistance for cyclic loading conditions due to the formation of a gap between the pile cap and backfill soil and backfill stiffness reduction. Based on the test results, the cyclic-hyperbolic model is developed to define load-deflection relationships for both virgin and cyclic loading conditions with the presence of a gap.  相似文献   

10.
Estimation of spudcan penetration resistance is an important design step to guarantee the stability and functionality of offshore mobile jack-up units. Dependence on in situ penetrometer test data to evaluate the stratigraphy and resulting spudcan capacity profile has been increased. However, this becomes difficult in intermediate soil types in which the degree of consolidation during penetration falls between the extremes of fully drained or fully undrained. In this study, a penetrometer-based methodology utilizing results from cone and T-bar penetration tests is developed. Three main steps are involved, comprising estimation of the relative penetration resistance of spudcan and cone or T-bar penetrometer under fully drained and fully undrained conditions, and then quantifying the effect of the different normalized penetration rates for spudcan and penetrometer. Values of the various correlation parameters for the proposed model are evaluated. The validity and accuracy of the proposed methodology are evaluated through case studies from centrifuge tests in clay and a field example of spudcan installation in interbedded carbonate silts and sands. The comparisons confirm the potential of the proposed methodology for interpretation of penetrometer tests and application to the prediction of foundation performance.  相似文献   

11.
A three-dimensional finite-element analysis was performed to analyze the effect of soil anisotropy on the inclined piezocone penetration test in normally consolidated clay. The piezocone penetration was numerically simulated based on a large strain formulation using the commercial finite-element code ABAQUS, and the anisotropic modified cam clay model (AMCCM) was chosen and implemented into ABAQUS through the user subroutine UMAT. For verification purposes, numerical simulations were first performed on previously conducted calibration chamber tests, and the predicted results were compared with the measured values. For different initial stress conditions and different penetration angles, the cone tip resistance profile; excess pore pressure profile at the cone tip; typical stress, strain and excess pore pressure distributions around the cone; and excess pore pressure dissipation at the cone tip are provided. This study shows that when the initial stress state is anisotropic, the soil behavior is different under different angles of penetration.  相似文献   

12.
This paper presents simulations of the mechanical behavior of reconstituted and natural soils using a new model presented in a companion paper and referred to as the “Sydney soil model.” It is demonstrated that the performance of the proposed model is essentially the same as that of modified Cam clay model when describing the behavior of clays in laboratory reconstituted states. The model has also been employed to simulate the drained and undrained behavior of structured clays and sands, including calcareous clay and sand. Five sets of conventional triaxial tests and one set of true triaxial tests have been considered. It is demonstrated that the new model provides satisfactory qualitative and quantitative modeling of many important features of the behavior of structured soils, particularly in capturing various patterns of the stress and strain behavior associated with soil type and structure. A general discussion of the model parameters is also included. It is concluded that the Sydney soil model is suitable for representing the behavior of many soils if their ultimate state during shearing can be defined by an intrinsic and constant stress ratio M* and a unique relationship between mean effective stress and voids ratio, i.e., a unique p′-e curve.  相似文献   

13.
Constitutive surfaces are indispensable for investigation of the behavior of soils. Saturated and unsaturated soils coexist in most engineering problems and it is meaningful to develop constitutive surfaces covering both saturated and unsaturated conditions which help to investigate the behavior for both saturated and unsaturated soils in a unified way. At present, the methodologies used for saturated and unsaturated soils are different and few researchers consider the constitutive surfaces for saturated soils. For unsaturated soils, the suction-controlled triaxial tests are usually laborious, time consuming, costly, and may not justify routine engineering projects. This paper discusses the role of constitutive surfaces in soil mechanics and presents an improved approach over existing interpolation methods to construct the constitutive surfaces for saturated and unsaturated conditions for a stable-structured soil using simple laboratory tests.  相似文献   

14.
This paper describes the use of a soil minipenetrometer (SMP) to determine the strength and index properties of fine-grained soils. The SMP has been developed to allow both fall cone and quasi-static penetration tests to be performed. Displacement controlled quasi-static penetration tests can be used for the direct measurement of undrained shear strength, both for remolded and undisturbed samples. In addition the quasi-static penetration test can be used to define an additional lower plastic limit parameter, the PL100, which represents the moisture content of a fine-grained soil with an undrained strength 100 times that at the liquid limit. This approach offers the advantage that removal of the coarse fraction is not required to estimate the PL100.  相似文献   

15.
The nonhomogeneous behavior of structured soils during triaxial tests has been studied using a finite element model based on the Structured Cam Clay constitutive model with Biot-type consolidation. The effect of inhomogeneities caused by the end restraint is studied by simulating drained triaxial tests for samples with a height to diameter ratio of 2. It was discovered that with the increase in degree of soil structure with respect to the same soil at the reconstituted state, the inhomogeineities caused by the end restraint will increase. By loading the sample at different strain rates and assuming different hydraulic boundary conditions, inhomogeneities caused by partial drainage were investigated. It was found that if drainage is allowed from all faces of the specimen, fully drained tests can be carried out at strain rates about ten times higher than those required when the drainage is allowed only in the vertical direction at the top and bottom of the specimen, confirming the findings of previous studies. Both end restraint and partial drainage can cause bulging of the triaxial specimen around mid-height. Inhomogeneities due to partial drainage influence the stress–strain behavior during destructuring, a characteristic feature of a structured soil. With an increase in the strain rate, the change in voids ratio during destructuration reduces, but, in contrast, the mean effective stress at which destructuration commences was found to increase. It is shown that the stress–strain behavior of the soil calculated for a triaxial specimen with inhomogeneities, based on global measurements of the triaxial response, does not represent the true constitutive behavior of the soil inside the test specimen. For most soils analyzed, the deviatoric stress based on the global measurements is about 25% less than that for the soil inside the test specimen, when the applied axial strain is about 30%. Therefore it can be concluded that the conventional global measurements of the sample response may not accurately reflect the true stress–strain behavior of a structured soil. This finding has major implications for the interpretation of laboratory triaxial tests on structured soils.  相似文献   

16.
Observed Performance of Long Steel H-Piles Jacked into Sandy Soils   总被引:1,自引:0,他引:1  
Full-scale field tests were performed to study the behavior of two steel H-piles jacked into dense sandy soils. The maximum embedded length of the test piles was over 40?m and the maximum jacking force used was in excess of 7,000?kN. The test piles were heavily instrumented with strain gauges along their shafts to measure the load transfer mechanisms during jacking and the subsequent period of static load tests. Piezometers were installed in the vicinity of the piles to monitor the pore pressure responses at different depths. The time effect and the effect of installation of adjacent piles were also investigated in this study. The test results indicated that, although both piles were founded on stiff sandy strata, most of the pile capacity was carried by shaft resistance rather than base resistance. This observation implies that the design concept that piles in dense sandy soils have very large base capacity and small shaft resistance is likely to be inappropriate for jacked piles. It was also found that the variation in pore pressures induced by pile jacking was closely associated with the progress of pile penetration; the pore pressure measured by each piezometer reached a maximum when the pile tip arrived at the piezometer level. A nearby pile jacking was able to produce large tensile stresses dominating in the major portion of an installed pile; both the magnitude and distribution of the induced stresses were related to the penetration depth of the installing pile.  相似文献   

17.
Cyclic Lateral Load Behavior of a Pile Cap and Backfill   总被引:1,自引:0,他引:1  
A series of static cyclic lateral load tests were performed on a full-scale 4×3 pile group driven into a cohesive soil profile. Twelve 324-mm steel pipe piles were attached to a concrete pile cap 5.18×3.05?m in plan and 1.12?m in height. Pile–soil–pile interaction and passive earth pressure provided lateral resistance. Seven lateral load tests were conducted in total; four tests with backfill compacted in front of the pile cap; two tests without backfill; and one test with a narrow trench between the pile cap and backfill soil. The formation of gaps around the piles at larger deflections reduced the pile–soil–pile interaction resulting in a degraded linear load versus deflection response that was very similar for the two tests without backfill and the trenched test. A typical nonlinear backbone curve was observed for the backfill tests. However, for deflections greater than 5 mm, the load-deflection behavior significantly changed from a concave down shape for the first cycle to a concave up shape for the second and subsequent cycles. The concave up shape continued to degrade with additional cycles past the second and typically became relatively constant after five to seven cycles. A gap formed between the backfill soil and the pile cap, which contributed to the load-deflection degradation. Crack patterns and sliding surfaces were consistent with that predicted by the log spiral theory. The results from this study indicate that passive resistance contributes considerably to the lateral resistance. However, with cyclic loading the passive force degrades significantly for deflections greater than 0.5% of the pile cap height.  相似文献   

18.
In situ tests were performed and samples were taken from a uniform layer of clay used as a material for the production of bricks. The shear resistance was measured, using Geonor Inspection Vane Tester H-60, in a quadratic mesh of 961 test points in the horizontal plane, spaced at 15 cm. Vane resistance tests were also performed in the laboratory on 76 undisturbed samples, on which the constrained modulus in consolidometers was determined. The aim of the research was to find the parameters of the 2D random field of shear strength and the correlation of this field with that of constrained modulus. The strong correlation obtained eventually enabled estimating the autocorrelation function of the constrained modulus describing the elastic behavior of the soil. A simple estimation procedure is proposed, enabling curve fitting of different isotropic and anisotropic correlation functions. Additionally, some statistical analyses of data were performed, including regression and time series analysis. The problem of the local and global variabilities of soil properties and their ramifications is also considered.  相似文献   

19.
Lime kiln dust (LKD) is used for modifying pavement subgrades to expedite construction on wet clayey soils. This paper describes the short-term development (typically, over the first 3?to?7?days) of electrical conductivity and penetration resistance of LKD-modified soils. The normalized net change of electrical conductivity is solely related to the LKD dosage. The decrease of electrical conductivity with time coincides with the increase of penetration resistance with time. The correlations of electrical conductivity with strength gain in LKD and lime-modified soils suggest that electrical conductivity measurements can potentially be useful for quality control in field applications.  相似文献   

20.
Liquefaction of granular soil deposits is one of the major causes of loss resulting from earthquakes. The accuracy in the assessment of the likelihood of liquefaction at a site affects the safety and economy of the design. In this paper, curves of cyclic resistance ratio (CRR) versus cone penetration test (CPT) stress-normalized cone resistance qc1 are developed from a combination of analysis and laboratory testing. The approach consists of two steps: (1) determination of the CRR as a function of relative density from cyclic triaxial tests performed on samples isotropically consolidated to 100 kPa; and (2) estimation of the stress-normalized cone resistance qc1 for the relative densities at which the soil liquefaction tests were performed. A well-tested penetration resistance analysis based on cavity expansion analysis was used to calculate qc1 for the various soil densities. A set of 64 cyclic triaxial tests were performed on specimens of Ottawa sand with nonplastic silt content in the range of 0–15% by weight, and relative densities from loose to dense for each gradation, to establish the relationship of the CRR to the soil state and fines content. The resulting (CRR)7.5-qc1 relationship for clean sand is consistent with widely accepted empirical relationships. The (CRR)7.5-qc1 relationships for the silty sands depend on the relative effect of silt content on the CRR and qc1. It is shown that the cone resistance increases at a higher rate with increasing silt content than does liquefaction resistance, shifting the (CRR)7.5-qc1 curves to the right. The (CRR)7.5-qc1 curves proposed for both clean and silty sands are consistent with field observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号