首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1, synchronization success rates increased dramatically for spatiotemporal sequences of both geometric and biological forms over flashing sequences. In Experiment 2, synchronization performance was best when target sequences and movements were directionally compatible (i.e., simultaneously down), followed by orthogonal stimuli, and was poorest for incompatible moving stimuli and flashing stimuli. In Experiment 3, synchronization performance was best with auditory sequences, followed by compatible moving stimuli, and was worst for flashing and fading stimuli. Results indicate that visuomotor synchronization improves dramatically with compatible spatial information. However, an auditory advantage in sensorimotor synchronization persists. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
Adaptation to a visuomotor rotation is known to be impaired at older adult age. The authors examined whether the impairment is present already at preretirement age and whether it depends on the difficulty of the adaptation task. Moreover, the authors tested predictions of the hypothesis that the age-related impairment pertains primarily to strategic corrections and the explicit knowledge on which they are based but not to the acquisition of an (implicit) internal model of the novel visuomotor transformation. The authors found an age-related impairment of adaptation and explicit knowledge already at preretirement age but no age-related change of aftereffects. With an incremental simplification of the adaptation task, age-related changes were able to be eliminated. Individual differences of the quality of explicit knowledge were associated with differences of adaptation, but not of aftereffects. When age groups were matched by explicit knowledge, age-related impairments of adaptation largely disappeared. However, a reliable difference remained in one of the experiments, suggesting that other processes of adjustment to a visuomotor rotation might be affected by aging as well. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
Four experiments were performed to identify the spatial information that cats used to encode the position of an object they saw move and disappear. In Experiment 1 and 2, several sources of allocentric spatial information were manipulated. Results indicated that the cats used none of these sources and instead relied primarily on their own spatial coordinates (pure egocentric information) to locate the hidden object. In Experiment 3 and 4, pure egocentric information was made unreliable by a detour task. Results showed that the cats encoded a metric source of allocentric spatial information—the relationship between the walls of the room and the hiding place. Together, these results reveal that cats' encoding of spatial information is flexible and adapted to various kinds of situations that can be encountered in the natural environment. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
Objective: Enhanced understanding of cognitive deficits, and the neurobiological abnormalities that mediate them, can be achieved through translational research that employs comparable experimental approaches across species. This study employed a multiple-systems framework derived from the rodent literature to investigate visual–spatial memory abilities associated with schizophrenia. Method: Using the bin task, a human analog of rodent maze tasks, everyday objects were hidden in visually identical bins. Following a 1-min filled delay, participants with schizophrenia-spectrum disorders (n = 30) and healthy community controls (n = 30) were asked to identify both the object hidden and bin used on the basis of its spatial location. Three dimensions of visual–spatial memory were contrasted: (a) memory for spatial locations versus memory for objects, (b) allocentric (viewpoint independent) versus egocentric (body-centered) spatial representations, and (c) event (working) memory versus reference memory. Results: Most pronounced was a differential deficit in memory for spatial locations under allocentric (p = .005, d = ?0.77) but not egocentric viewing conditions (p = .298, d = ?0.28) in the schizophrenia group relative to healthy controls. Similarly, schizophrenia-related spatial memory deficits were pronounced under demands for event memory (p = .004, d = ?0.77) but not reference memory (p = .171, d = ?0.33). Conclusions: These results support a heuristic of preferential deficits in hippocampal-mediated forms of memory in schizophrenia. Moreover, the task provides a useful paradigm for translational research and the pattern of deficits suggests that persons with schizophrenia may benefit from mnemonic approaches favoring egocentric representations and consistency when interacting with our visual–spatial world. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
Animals with medial prefrontal cortex or parietal cortex lesions and sham-operated and non-operated controls were tested for the acquisition of an adjacent arm task that accentuated the importance of egocentric spatial lateralization and a cheese board task that accentuated the importance of allocentric spatial localization. Results indicated that relative to controls, animals with medial prefrontal cortex lesions are impaired on the adjacent arm task but displayed facilitation on the cheese board task. In contrast, relative to controls, rats with parietal cortex lesions are impaired on the cheese board task but show no impairment on the adjacent arm task. The data suggest a double dissociation of function between medial prefrontal cortex and parietal cortex in terms of coding of egocentric versus allocentric spatial information. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the posterior parietal cortex (PPC) might support egocentric representations. To date, however, few studies have examined long-standing egocentric representations of environments learned long ago. Here we tested 7 patients with focal lesions in PPC and 12 normal controls in remote spatial memory tasks, including 2 tasks reportedly reliant on allocentric representations (distance and proximity judgments) and 2 tasks reportedly reliant on egocentric representations (landmark sequencing and route navigation; see Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch, 2004). Patients were unimpaired in distance and proximity judgments. In contrast, they all failed in route navigation, and left-lesioned patients also showed marginally impaired performance in landmark sequencing. Patients' subjective experience associated with navigation was impoverished and disembodied compared with that of the controls. These results suggest that PPC is crucial for accessing remote spatial memories within an egocentric reference frame that enables both navigation and reexperiencing. Additionally, PPC was found to be necessary to implement specific aspects of allocentric navigation with high demands on spontaneous retrieval. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
The authors investigated the type of spatial information that controls domestic dogs' (Canis familiaris) search behavior in a situation in which they have to locate a spatial position where they saw an object move and disappear. In Experiments 1 and 2, the authors manipulated all local and global sources of allocentric spatial information surrounding the hiding location. The results revealed that dogs relied on an egocentric frame of reference. Experiment 3 showed that dogs also encoded allocentric information when egocentric information was irrelevant. The authors conclude that dogs simultaneously encode both egocentric and allocentric spatial information to locate a spatial position, but they primarily base their search behavior on an egocentric frame of reference. The authors discuss under which natural conditions dogs might use these 2 sources of spatial information and detail the nature of spatial egocentric information and the circumstances underlying its use by dogs. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
The principle of 'divide-and-conquer' the decomposition of a complex task into simpler subtasks each learned by a separate module, has been proposed as a computational strategy during learning. We explore the possibility that the human motor system uses such a modular decomposition strategy to learn the visuomotor map, the relationship between visual inputs and motor outputs. Using a virtual reality system, subjects were exposed to opposite prism-like visuomotor remappings-discrepancies between actual and visually perceived hand locations- for movements starting from two distinct locations. Despite this conflicting pairing between visual and motor space, subjects learned the two starting-point-dependent visuomotor mappings and the generalization of this learning to intermediate starting locations demonstrated an interpolation of the two learned maps. This interpolation was a weighted average of the two learned visuomotor mappings, with the weighting sigmoidally dependent on starting location, a prediction made by a computational model of modular learning known as the "mixture of experts". These results provide evidence that the brain may employ a modular decomposition strategy during learning.  相似文献   

9.
Three experiments investigated spatial orientation in a virtual navigation task. Subjects had to adjust a homing vector indicating their end position relative to the origin of the path. It was demonstrated that sparse visual flow was sufficient for accurate path integration. Moreover, subjects were found to prefer a distinct egocentric or allocentric reference frame to solve the task. "Turners" reacted as if they had taken on the new orientation during turns of the path by mentally rotating their sagittal axis (egocentric frame). "Nonturners," by contrast, tracked the new orientation without adopting it (allocentric frame). When instructed to use their nonpreferred reference frame, both groups displayed no decline in response accuracy relative to their preferred frame; even when presented with reaction formats based on either ego or allocentric coordinates, with format unpredictable on a trial, both groups responded highly accurately. These findings support the assumption of coexisting spatial representations during navigation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
The present experiments used 2 versions of a modified Hebb-Williams maze to test the role of the dorsal hippocampus (dHip) and parietal cortex (PC) in processing allocentric and egocentric space during acquisition and retention. Bilateral lesions were made to either the dHip or PC before maze testing (acquisition) or after maze testing (retention). The results indicate that lesions of the dHip impair allocentric maze acquisition, whereas lesions of the PC impair egocentric maze acquisition. During retention, lesions of the PC produced a significant impairment on both maze versions, whereas lesions of the dHip produced short-lived, transient impairments on both maze versions. These results suggest that during acquisition, the hippocampus and PC process spatial information in parallel; however, long-term retention of spatial information requires the PC with the dHIP as necessary for retrieval and/or access but not necessarily storage. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
Five rhesus monkeys (Macaca mulatta) were trained to learn novel conditional visuomotor associations, to perform this task with familiar stimuli, and to perform a visual matching-to-sample task with the same familiar stimuli. Removal of the orbital and ventral prefrontal cortex (PFv+o) in 1 hemisphere and inferotemporal cortex (IT) in the other, thus completing a surgical disconnection of these 2 regions, yielded an impairment on all 3 tasks. Addition of a premotor cortex lesion to the hemisphere containing the PFv+o lesion did not worsen the impairments. The results indicate that PFv+o interacts with IT in both the learning and retention of conditional visuomotor associations. In addition to those associations, which might be considered lower order rules for choosing a response, frontotemporal interaction also appears to be important for higher order rules, such as those involved in the matching task. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Observers can recognize other people from their movements. What is interesting is that observers are best able to recognize their own movements. Enhanced visual sensitivity to self-generated movement may reflect the contribution of motor planning processes to the visual analysis of human action. An alternative view is that enhanced visual sensitivity to self-motion results from extensive experience seeing one's own limbs move. To investigate this alternative explanation, participants viewed point-light actors from first-person egocentric and third-person allocentric viewpoints. Although observers routinely see their own actions from the first-person view, participants were unable to identify egocentric views of their own actions. Conversely, with little real-world experience seeing themselves from third-person views, participants readily identified their own actions from allocentric views. When viewing allocentric displays, participants accurately identified both front and rear views of their own actions. Because people have little experience observing themselves from behind or from third-person views, these findings suggest that visual learning cannot account for enhanced visual sensitivity to self-generated action. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
14.
Previous research has demonstrated that compensatory movements for changes in visuomotor coupling often are not consciously detected. But what factors affect the conscious detection of such changes? This issue was addressed in 4 experiments. Participants carried out a drawing task in which the relative velocity between the actual movement and its visual consequences was perturbed. Unconscious compensatory movements and conscious detection rates were simultaneously recorded. There was an invariant relationship between the extent of the change and its conscious detection that was proportional to the initial drawing velocity. This suggests that conscious change detection relies on a system that integrates visual and motor information-as, for instance, suggested by the internal model theory of motor control. Figural discrepancies increased the detection rates, indicating that additional cues for the what system facilitate conscious change detection. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
[Correction Notice: An erratum for this article was reported in Vol 24(2) of Neuropsychology (see record 2010-04449-002). In the current article the names of authors Marijtje A. J. van Duijn and Anke Bouma were misspelled as Maritje A. J. van Dujin and Anke Bourma, respectively. The online versions of this article have been corrected.] Follow-up studies of preterm children without serious neonatal medical complications have consistently found poor visuomotor and visuospatial skills. In the first round of current follow-up study, we found a deficit in elementary visuomotor processes in preterm children without Cerebral Palsy (CP). To determine whether the development of these processes was delayed or different, we carried out a quasi-longitudinal study in which kinematic characteristics of pointing movements in 7- to 11-year-old preterm born children without CP and in an age-matched full-term group were analyzed. Multi-level analysis suggested a difference rather than a delay in the preterm born group: we found a regression around 8 years of age in the control but not in the preterm group. To our knowledge, this study is the first to provide longitudinal data confirming this regression in the development of movement control in typically developing children. Our results are also consistent in suggesting that elementary visuomotor processes are less efficient in preterm born children without CP: their movements were either slower or less accurate. While these differences were subtle, they persisted until 11 years of age. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
This study investigated the role of dorsal striatum in spatial memory in mice. The mice were tested for their ability to detect a spatial displacement 24 hrs after training. In order to manipulate the dorsal striatum, focal administrations of the N-methyl-D-aspartate (NMDA) antagonist D-2-amino-5 phosphonopentanoic acid (AP-5) were performed immediately after training. AP-5 impaired the mice's ability to detect the spatial change only if their initial position was constant during training and testing. These findings demonstrate that NMDA receptor blockade within the dorsal striatum impairs spatial memory consolidation in a task in which no explicit reward or procedural learning is involved. The results are discussed with reference to a possible selective involvement of this structure in processing spatial information acquired through an egocentric, but not an allocentric, frame of reference. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
This study addressed the role of the medial temporal lobe regions and, more specifically, the contribution of the human hippocampus in memory for body-centered (egocentric) and environment-centered (allocentric) spatial location. Twenty-one patients with unilateral atrophy of the hippocampus secondary to long-standing epilepsy (left, n = 7; right, n = 14) and 15 normal control participants underwent 3 tasks measuring recall of egocentric or allocentric spatial location. Patients with left hippocampal sclerosis were consistently impaired in the allocentric conditions of all 3 tasks but not in the egocentric conditions. Patients with right hippocampal sclerosis were impaired to a lesser extent and in only 2 of the 3 tasks. It was concluded that hippocampal structures are crucial for allocentric, but not egocentric, spatial memory. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
Thirty patients who had undergone either a right or left unilateral temporal lobectomy (14 RTL; 16 LTL) and 16 control participants were tested on a computerized human analogue of the Morris Water Maze. The procedure was designed to compare allocentric and egocentric spatial memory. In the allocentric condition, participants searched for a target location on the screen, guided by object cues. Between trials, participants had to walk around the screen, which disrupted egocentric memory representation. In the egocentric condition, participants remained in the same position, but the object cues were shifted between searches to prevent them from using allocentric memory. Only the RTL group was impaired on the allocentric condition, and neither the LTL nor RTL group was impaired on additional tests of spatial working memory or spatial manipulation. The results support the notion that the right anterior temporal lobe stores long-term allocentric spatial memories. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Investigated whether adult gerbils could use an allocentric frame of reference to efficiently solve a spatial memory task. 38 male Ss were allowed to explore an arena containing an object. The external reference frame was reduced to a single visual landmark. After habituation, Ss entered the arena from a new direction. A 2nd object, identical to the 1st object, was placed symmetrically with regard to the landmark. The 2nd object was explored more than the 1st object, a result showing that the 2nd object was differentiated on the basis of location. This result suggests that, during the course of exploration, Ss had learned about the spatial features of the experimental situation. It is suggested that Ss' final discrimination performance (preference for the novel stimulus location) reflected an allocentric rather than egocentric frame of reference. (15 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
Themes emerging from the collection of articles in the Special Section on Long-Term Spatial Memory include the notion of multiple spatial systems, the relation between spatial representations and episodic memory, the role of context, and the neural systems involved in space. The authors conclude that distinguishing between egocentric and allocentric spatial systems makes sense of both behavioral and neurobiological data. The special role of the hippocampal system in allocentric space, and as a consequence, in context, suggests how a spatial system might end up central to the ability to remember episodes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号