首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yan-Zuo Tsai 《Thin solid films》2010,518(24):7523-7526
The CrAlSiN/W2N multilayer coatings were fabricated by DC magnetron sputtering. The bilayer periods of multilayer films were controlled in the range from 3 to 20 nm. The cross-sectional structure of multilayer and monolayer coatings was evaluated by transmission electron microscopy (TEM). The wear behavior of monolayer and multilayer coatings was investigated by a pin-on-disc tribometer. The nano-scratch tester was employed to study the crack propagation of scratched coatings. The images of wear scars were observed by optical microscopy (OM). The cross-sectional image of scratched films was analyzed by transmission electron microscopy (TEM). Owing to the nano-layered structure and higher hardness (or H/E ratio), the multilayer coatings exhibited better wear resistance than homogeneous films. The coefficient of friction of CrAlSiN/W2N multilayer coating with a bilayer period of 8 nm was around 0.6, and that of CrAlSiN homogeneous film was about 0.8. Different crack propagation mechanisms of CrAlSiN/W2N multilayer and CrAlSiN monolayer coatings were proposed and discussed.  相似文献   

2.
目的 研究干摩擦条件下不同AlTiN/AlCrN多层膜纳米调制结构对摩擦磨损行为的影响。方法 将处理过的合金工具钢和单晶硅片作为膜层生长的基底材料,在膜层制备之前,先对基底材料进行预处理,然后使用多靶磁控溅射纳米膜层系统沉积一系列不同调制周期和调制比的AlTiN/AlCrN纳米多层膜。通过控制涂层总厚度不变,在调制比为1︰1时,设计不同的调制周期,择优选出磨损量最小、耐磨性最好的调制周期,并以此为恒定值,进而设计不同调制比的试样。采用X射线衍射仪(XRD)、摩擦磨损试验机分析与表征纳米多层膜的微观结构和性能,研究调制周期和调制比对AlTiN/AlCrN纳米多层膜微观结构和干摩擦条件下摩擦磨损性能的影响。结果 AlTiN/AlCrN纳米多层膜主体均为面心立方结构,且在(111)、(200)和(220)晶面择优取向。调制结构对多层膜的磨损特性影响较大,当调制周期为14.4 nm时,在干摩擦条件下AlTiN/AlCrN纳米多层膜的摩擦磨损量最小;在调制周期恒定为14.4 nm情况下,当调制比为3︰1时,在干摩擦条件下AlTiN/AlCrN纳米多层膜的耐磨性能最好;AlTiN/AlCrN纳米多层膜的磨损机理主要以磨粒磨损和黏附磨损为主。结论 优化的AlTiN/AlCrN多层膜纳米调制结构技术可应用在切削刀具的表面再制造领域,从而延长刀具工作寿命,通过涂层良好的耐磨性能提升设备的加工效率。  相似文献   

3.
The TiSiN/Ag multilayer coatings with bilayer periods of ~50, 65, 80, 115, 150, and 410 nm have been deposited on Ti6Al4 V alloy by arc ion plating. In order to improve the adhesion of the TiSiN/Ag multilayer coatings, TiN buffer layer was first deposited on titanium alloy. The multi-interfacial TiSiN/Ag layers possess alternating TiSiN and Ag layers. The TiSiN layers display a typical nanocrystalline/amorphous microstructure, with nanocrystalline TiN and amorphous Si3N4. TiN nanocrystallites embed in amorphous Si3N4 matrix exhibiting a fine-grained crystalline structure. The Ag layers exhibit ductile nanocrystalline metallic silver. The coatings appear to be a strong TiN (200)-preferred orientation for fiber texture growth. Moreover, the grain size of TiN decreases with the decrease of the bilayer periods. Evidence concluded from transmission electron microscopy revealed that multi-interfacial structures effectively limit continuous growth of single (200)-preferred orientation coarse columnar TiN crystals. The hardness of the coatings increases with the decreasing bilayer periods. Multi-interface can act as a lubricant, effectively hinder the cracks propagation and prevent aggressive seawater from permeating to substrate through the micro-pores to some extent, reducing the friction coefficient and wear rates. It was found that the TiSiN/Ag multilayer coating with a bilayer period of 50 nm shows an excellent wear resistance due to the fine grain size, high hardness, and silver-lubricated transfer films formed during wear tests.  相似文献   

4.
钛合金表面Ti-TiN-Zr-ZrN多层膜制备及性能   总被引:1,自引:0,他引:1  
采用多靶位真空阴极电弧沉积技术,在TC11钛合金表面制备24周期的Ti-TiN-Zr-ZrN软硬交替多元多层膜。用扫描电镜、X射线衍射仪、显微硬度计、结合力划痕仪、球-盘摩擦磨损试验仪、砂粒冲刷试验仪和3D表面形貌仪,研究多层膜的表面及截面形貌、相结构、厚度、硬度、膜/基结合力、摩擦磨损性能和抗砂粒冲蚀性能。结果表明:所制备TiTiN-Zr-ZrN多层膜厚度约为5.8μm,维氏显微硬度为28.10GPa,膜基结合力为56N;TC11钛合金表面镀多层膜后耐磨性提高了一个数量级,体积磨损率由7.06×10~(-13) m~3·N~(-1)·m~(-1)降低到3.03×10~(-14) m~3·N~(-1)·m~(-1);多层膜软硬层交替的结构,受砂粒冲蚀时裂纹扩展至金属软层时应力的缓冲而出现偏转,对TC11钛合金有良好的抗砂粒冲蚀保护作用。  相似文献   

5.
TiN/VCN多层膜的力学性能及摩擦磨损性能研究   总被引:1,自引:0,他引:1  
采用多靶磁控溅射技术, 制备了TiN、VCN单层膜及调制比为1:1的系列调制周期的TiN/VCN多层膜。利用X射线衍射仪、纳米压痕仪、高温摩擦磨损测试仪和扫描电子显微镜研究了各种薄膜的微结构、力学性能及室温和高温摩擦磨损性能。研究表明: TiN/VCN多层膜以δ-NaCl面心立方结构为主; TiN/VCN多层膜的最大硬度值为28.71 GPa, 约为按混合法则计算所得理论硬度值的1.23倍, 并据此分析了TiN/VCN多层膜的致硬机理; TiN/VCN多层膜在室温下摩擦系数与TiN单层膜摩擦系数相近, 但当环境温度为700℃时, 摩擦系数约0.4, 较TiN单层膜(0.52)低。TiN/VCN多层膜室温和高温下的磨损率相比TiN单层膜减小了约3×10-14 m3/(N·m)。从晶体化学和热测量方法角度讨论了TiN/VCN多层膜的Magnéli相V2O5的润滑机制。  相似文献   

6.
TiN/TiC multilayer films deposited by pulse biased arc ion plating   总被引:1,自引:0,他引:1  
TiN/TiC multilayer films were deposited on high-speed-steel (HSS) substrates using pulse biased arc ion plating. For comparison, TiN and TiC films were also deposited. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Auger electron spectroscopy (AES) were applied to investigate the modulation period thickness, microstructure and content depth distribution of the films, respectively. And microhardness and film/substrate adhesion were also analyzed using knoop tester and scratching method. The results showed that the multilayer films with different modulation period of 40-240 nm exhibit a modulation structure and the interface width is about 20∼30 nm. Microhardness of the multilayer films were not obviously improved compared to that of TiN and TiC film, and the reason was analyzed. In comparison to TiN film, film/substrate adhesion values of the multilayer films were deteriorated with the increasing of modulation period due to the brittle characteristics of TiC film.  相似文献   

7.
纳米铜-镍多层膜的耐磨性研究   总被引:11,自引:0,他引:11  
用电沉积方法制得不同调制波长的纳米多层膜,研究了不同载荷下不同调制波长的纳米多层膜与52100钢外圆柱面的无润滑磨损。试验结果表明,与单一金属的铜膜、镍膜对钢无润滑滑动的磨损抗力相比,铜 镍纳米多层膜的磨损抗力显著增加,而且调制波长越小,磨损抗力越大。  相似文献   

8.
In this paper,graphite-like carbon(GLC)films with Cr buffer layer were fabricated by DC magnetron sputtering technique with the thickness ratio of Cr to GLC films varying from 1:2 to 1:20.The effect of Cr/GLC modulation ratio on microstructure,mechanical and tribological properties in artificial seawater was mainly investigated by scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),nano-indenter and a reciprocating sliding tribo-meter.The propagation of defects plays an important role in the evolution of delamination,which is critical to wear failure of GLC films in artificial seawater.Designing the proper multilayer structure could inhibit the defects propagation and thus protect the basis material.The multilayer Cr/GLC film with optimized ratio of 1:3 demonstrates a low average friction coefficient of 0.08±0.006 and wear rate of(2.3±0.3)×10~(-8)mm~3/(N m)in artificial seawater,respectively.  相似文献   

9.
由于高频软磁薄膜材料具有巨大的应用前景因此获得了人们广泛的关注。对纳米合金软磁薄膜、纳米软磁颗粒膜、多层膜以及图形化薄膜进行了分类综述,分别介绍了各类薄膜的制备方法、化学成分、微观结构特点和高频物理性能,并对影响其性能的主要因素进行了讨论。由于纳米高频软磁薄膜材料相对于传统磁性材料具有显著优势,所以纳米合金软磁薄膜有望取代铁氧体作为制作高频磁性器件的主要应用材料。由于纳米软磁颗粒膜、多层膜以及新兴的图形化薄膜具有材料结构设计和物性剪裁的自由度,因此将是今后的重点研究方向。  相似文献   

10.
The electrostatically self-assembly method is getting strategically important to prepare multilayer thin films. With careful choice of component materials, this method should allow for the preparation of multilayer thin films with a variety of excellent technological properties. Ti02/PSS multilayer thin films with ordered structure were prepared by electrostatic self-assembly method. UV-Vis-NIR spectrophotometer, X-ray photoelectron spectroscopy (XPS), and atom force microscopy (AFM) were used to characterize the structure and performance of the multilayer films. Because electrostatically self-assembly method allows molecular-level control over the film composition and thickness, this paper studied the responding depth of photocatalytic activity of Ti02 self-assembled films in detail.  相似文献   

11.
We have fabricated, by simultaneous DC and RF magnetron sputtering, multilayer transparent electrodes having much lower electrical resistance than the widely used transparent conductive oxide electrodes. The multilayer structure consists of three layers (ZnO/Ag/ZnO). Ag films with different film thickness were used as metallic layers. Optimum thicknesses of Ag and ZnO films were determined for high optical transmittance and good electrical conductivity. Several analytical tools such as spectrophotometer, atomic force microscopy, scanning electron microscopy and four-point probe were used to explore the possible changes in electrical and optical properties. A high quality transparent electrode, having resistance as low as 3 Ω/sq and high optical transmittance of 90% was obtained at room temperature and could be reproduced by controlling the preparation process parameters. The electrical and optical properties of ZnO/Ag/ZnO multilayers were determined mainly by the Ag film properties. The performance of the multilayers as transparent conducting materials was also compared using a figure of merit.  相似文献   

12.
In order to improve the friction and wear behaviours and rolling contact fatigue (RCF) life of bearing steel materials, Ti/TiN/DLC (diamond-like carbon) multilayer hard films were fabricated onto AISI52100 bearing steel surface by plasma immersion ion implantation and deposition (PIIID) technique. The micro-Raman spectroscopy analysis confirms that the surface film layer possess the characteristic of diamond-like carbon, and it is composed of a mixture of amorphous and crystalline phases, with a variable ratio of sp2/sp3 carbon bonds. Atomic force microscope (AFM) reveals that the multilayer films have extremely smooth area, excellent adhesion, high uniformity and efficiency of space filling over large areas. The nanohardness (H) and elastic modulus (E) measurement indicates that the H and E of DLC multilayer films is about 32 GPa and 410 GPa, increases by 190.9% and 86.4%. The friction and wear behaviours and RCF life of DLC multilayer films specimen have also been investigated by ball-on-disc and three-ball-rod fatigue testers. Results show that the friction coefficient against AISI52100 steel ball decreases from 0.92 to 0.25, the longest wear life increases nearly by 22 times. In addition, wear tracks of the PIIID samples as well as wear tracks of the sliding steel ball were analyzed with the help of optical microscopy and scanning electron microscopy (SEM). The L10, L50, La and mean RCF life L of treated bearing samples, in 90% confidence level, increases by 10.1, 4.2, 3.5 and 3.4 times, respectively. Compared with the bearing steel substrate, the RCF life scatter extent of Ti/TiN/DLC multilayer films sample is improved obviously.  相似文献   

13.
This paper describes an experimental investigation into the influence of the stripe interspace and applied load on the tribological behavior of stripe patterned TiN films. The stripe patterned TiN films are deposited on an H13 steel surface by masked deposition with the filtered cathodic vacuum arc discharge (FCVAD) technique. The surface micro morphology, chemical composition, crystal structure, and mechanical properties of the films is characterized using 3D white light interferometry, scanning electron microscopy (SEM), X‐ray diffractometry (XRD), and a nano‐indentation tester, respectively. The tribological performance of patterned TiN is measured using a UMT‐5 tribometer, and the friction and wear mechanisms are analyzed, compared with that of the full TiN film and H13 steel substrate. The results show that the stripe patterned TiN films has better tribological properties than the full TiN film. These results are attributed to the synergistic effect between the surface pattern and the TiN film. The stripe interspace and the applied load has a more significant effect on the wear rate of the stripe patterned TiN films than the coefficient of friction of their friction pairs. A further study, however, is needed to analyze the relationship between the applied load and the wear rates of the stripe patterned TiN films.
  相似文献   

14.
采用直流磁控溅射方法在SKD-11钢的表面沉积一层MoS2/Ti复合膜,选择沉积厚度为1μm和2μm的复合膜进行摩擦磨损实验,结果表明,MoS2/Ti复合膜为纳米复合膜,能大大降低钢表面的摩擦系数,改善钢的摩擦性能。适当增加膜的厚度,有利于提高钢的抗磨损性能。  相似文献   

15.
Nanocrystalline Au(x)Cu(1-x) films were synthesized by depositing Cu/Au/Cu multilayer in nanocrystalline thin film form with requisite thickness of individual layers onto fused silica substrates by high pressure sputtering technique. The absorbance spectra showed only one surface plasmon peak for all the compositions with the exception that the peak position did not indicate gradual shift as gold concentration was increased. Peak position for the two compositions corresponding to the two superlattice structures, AuCu3 and AuCu, deviated significantly from linear variation. The experimental results have been discussed in light of the existing Mie theory and the Core-shell model.  相似文献   

16.
New method for nucleation of different nanocrystalline carbon films upon monocrystalline Si substrate was proposed. The process is based on a combination of microwave and radio frequency plasma assisted chemical vapor deposition methods. Potential of the method for nucleation was demonstrated by deposition of nanocrystalline diamond film in pure microwave plasma in one process, immediately after "seeding" procedure. The method was also used for growth of nanocrystalline graphite (NCG) films, which are currently under intensive investigation due to their exceptional electronic properties, particularly fine electron emission characteristics. Deposited NCG films have demonstrated remarkable electron field emission properties having current density of up to 10 A/cm2. The films have also possessed good adhesion to silicon substrate. Carbon films and nucleation layer were characterized by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy.  相似文献   

17.
采用自行设计制造的离子束联合溅射系统,将磁控溅射与离子注入技术相结合,在镁合金表面形成多层TiAlN强化膜.用金相显微镜、X射线衍射仪、原子力显微镜、摩擦磨损仪等手段,研究了多层膜的表面形貌、结构和性能.结果表明,TiAlN膜膜表面光滑致密、孔隙率大大降低,粗糙度为42.28nm,由TiAlN强化相组成;成膜后耐磨性有所提高,但摩擦系数变化不大,未达到减摩作用.  相似文献   

18.
许多年来,氮化钛镀膜的使用相当普遍。在周期表中与钛属于同一周期的另一过渡元素锆,亦是一引人注目的材料。已有许多关于氮化锆的研究,然而,对碳氮化锆的了解仍然有限。本研究使用非平衡磁控溅镀系统制备了ZrCN镀膜,探讨了C2H2/N2反应气体流量比例、以及添加Ti、W等对ZrCN硬度和磨耗性能的影响。结果显示,在总反应气体流量固定不变状态下,ZrCN硬度及磨润性能随反应气体流量比例降低而增加;添加Ti和W会显著增加ZrCN的硬度和磨耗性能,添加Ti的效果比添加W的佳。不论有无添加物,Zr CN的磨耗性能皆明显比TiN的佳。  相似文献   

19.
The flexible oriented one-dimensional (1-D) TiO2 nanocrystalline films with large length-diameter ratios were synthesized in 1 M NaOH solution by hydrothermal treatment of the thin titanium layer which was deposited on flexible stainless steel substrates by direct current magnetron sputtering. The films were characterized, respectively by field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), and transmission electron microscopy (TEM). Results showed that the TiO2 films were composed of oriented single-crystalline anatase nanowires, and the morphology of the nanowire film was determined by hydrothermal conditions. The photoelectric property studies revealed that the photoelectric property of TiO2 films was improved with the increase of the hydrothermal temperature. This approach provides an alternative method to synthesize 1-D TiO2 nanocrystalline films on non-Ti substrates.  相似文献   

20.
碳纳米管和壳聚糖的层层静电自组装多层膜(英文)   总被引:2,自引:0,他引:2  
将多壁碳纳米管(MWCNT)置于混酸(硝酸∶硫酸=1∶3)中,利用超声波振荡截短碳纳米管、并使其与羧基链接,而后基于阳离子聚合电解质壳聚糖(CS)和阴离子短切碳纳米管之间的静电作用,在玻璃衬底上通过层层的模式均匀稳定地自组装形成复合壳聚糖多层膜。UV-vis光谱显示:组装过程呈现均匀而连续的生长。AFM和SEM观察表明:CS/MWCNT多层膜具有良好的光学特性,在生物传感器方面具有潜在的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号