首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study provides data which illustrate the effects of an array of dimples on local and spatially-averaged surface Nusselt number distributions, as well as on friction factors in channels with laminar flow. Trends of spatially-averaged Nusselt numbers and friction factors are provided as they vary with dimple depth, channel height, Reynolds number from 260 to 1030, and the use of protrusions on the opposite channel wall. When compared with turbulent flow results, the present laminar data illustrate changes due to the absence of turbulence transport. For example, in contrast to turbulent flows, the present laminar flow data show that there is no overall benefit from the use of a top wall with protrusions. In addition, spatially-averaged Nusselt number ratios and friction factor ratios measured on a deep dimpled surface with a smooth top wall show trends which are opposite from ones observed in turbulent flows, since lower laminar heat transfer augmentations are present for smaller channel heights when compared at the same Reynolds number.  相似文献   

2.
This study presents the determination of optimum values of the design parameters in a heat exchanger with a rectangular duct by using Taguchi method. The heat exchanger has plate-fins containing periodically interrupted diverging and converging channel flow domains. The experimental investigation for the established heat exchanger involves short rectangular fins attached in 8 × 8 arrays to a surface having various inclination angles. The effects of the six design parameters such as the ratio of the duct channel width to height, the ratio of the winglets length to the duct channel length, inclination angles of winglets, Reynolds number, flow velocity and pressure drop are investigated. In the Taguchi experimental design method, Nusselt number and friction factor are considered as performance parameters. An L25 (56) orthogonal array is chosen as an experimental plan for the design parameters. The analysis of Taguchi method conducted with an optimization process to reach minimum pressure drop (friction factor) and maximum heat transfer (Nusselt number) for the designed heat exchanger. Experimental results validated the suitability of the proposed approach.  相似文献   

3.
An experimental study has been conducted on the heat transfer of oscillating flow through a channel filled with aluminum foam subjected to a constant wall heat flux. The surface temperature distribution on the wall, velocity of flow through porous channel and pressure drop across the test section were measured. The characteristics of pressure drop, the effects of the dimensionless amplitude of displacement and dimensionless frequency of oscillating flow on heat transfer in porous channel were analyzed. The results revealed that the heat transfer in oscillating flow is significantly enhanced by employing porous media in a plate channel. The cycle-averaged local Nusselt number increases with both the kinetic Reynolds number Reω and the dimensionless amplitude of flow displacement A0. The length-averaged Nusselt number is effectively increased by increasing the kinetic Reynolds number from 178 to 874 for A0 = 3.1-4.1. Based on the experimental data, a correlation equation of the length-averaged Nusselt number with the dimensionless parameters of Reω and A0 is obtained for a porous channel with L/Dh = 3.  相似文献   

4.
Convection heat transfer from an array of discrete heat sources inside a rectangular channel has been investigated experimentally for air. The lower surface of the channel was equipped with 8×4 flush-mounted heat sources subjected to uniform heat flux; the sidewalls and the upper wall were insulated and adiabatic. The experimental parametric study was made for an aspect ratio of AR=2, Reynolds numbers 864≤ReDh≤7955, and modified Grashof numbers Gr*=1.72×108 to 2.76×109. From the experimental measurements, surface temperature distributions of the discrete heat sources were obtained and effects of Reynolds and Grashof numbers on these temperatures were investigated. Furthermore, Nusselt number distributions were calculated for different Reynolds and Grashof numbers. Results show that surface temperatures increase with increasing Grashof number and decrease with increasing Reynolds number. However, with the increase in the buoyancy affected secondary flow and the onset of instability, temperatures level off and even drop as a result of heat transfer enhancement. This outcome can also be observed from the variation of the row-averaged Nusselt number showing an increase towards the exit.  相似文献   

5.
The influence of baffle turbulators on heat transfer augmentation in a rectangular channel has been investigated experimentally and numerically. In the experiment, the baffles are placed in a zigzag shape (Z-shaped baffle) aligned in series on the isothermal-fluxed top wall, similar to the absorber plate of a solar air heater channel. The aim at using the Z-baffles is to create co-rotating vortex flows having a significant influence on the flow turbulence intensity leading to higher heat transfer enhancement in the tested channel. Effects of the Z-baffle height and pitch spacing length are examined to find the optimum thermal performance for the Reynolds number from 4400 to 20,400. The Z-baffles inclined to 45° relative to the main flow direction are characterized at three baffle- to channel-height ratios (e/H = 0.1, 0.2 and 0.3) and baffle pitch ratios (P/H = 1.5, 2 and 3). The experimental results show a significant effect of the presence of the Z-baffle on the heat transfer rate and friction loss over the smooth channel with no baffle. The Nusselt number, friction factor and thermal performance enhancement factor for the in-phase 45° Z-baffles are found to be considerably higher than those for the out-phase 45° Z-baffle at a similar operating condition. The in-phase 45° Z-baffle with larger e/H provides higher heat transfer and friction loss than the one with smaller e/H while the shorter pitch length yields the higher Nu, f and TEF than the larger one. The numerical work is also conducted to investigate the flow friction and heat transfer behaviors in the channel mounted with the 45° Z-baffles, and the numerical results are found in good agreement with experimental data.  相似文献   

6.
The paper presents a theoretical analysis of flow and heat transfer characteristics of the effects of buoyancy force on laminar boundary layer over a rotating sphere in forced flow under two kinds of heating conditions: uniform wall temperature and uniform surface heat flux. By applying appropriate coordinate transformations and using Merk's types of series, the governing momentum and energy equations are reduced to a set of coupled ordinary differential equations, which depend on wedge, rotation and buoyancy parameters. Numerical computations are carried out for Prandtl numbers 0.7,1.0 and for various values of buoyancy and rotation parameters. For aiding flow, it is found that both the friction factor and the local Nusselt number increase with increasing buoyancy force. The local free stream velocity increases with buoyancy which, in turn, affects the friction coefficient and Nusselt number. The coupling between rotation and buoyancy results in increased overshooting of the velocity profiles in the vicinity of the rotating sphere. For an equivalent buoyancy effect, heating by uniform surface heat flux yields larger local Nusselt number than heating by uniform wall temperature. The ratio NuUHF/NuUWT is higher for the rotating sphere (as compared to a nonrotating case) and further the ratio increases as the sphere spins faster. The effect of free stream, rotation and buoyancy on the eruption of flow is examined and also a suggestion for further investigation is made.  相似文献   

7.
The present study explored the effects of perforated double counter twisted tapes on heat transfer and fluid friction characteristics in a heat exchanger tube. The twisted tapes with four different porosities of Rp = 1.2, 4.6, 10.4 and 18.6% were used as counter-swirl flow generators in the test section. The experiments were conducted in a circular tube in turbulent flow regime with Reynolds number ranging from 7200 to 50,000 using air as the working fluid under uniform wall heat flux boundary condition. The experimental results demonstrated that the Nusselt number, friction factor and thermal enhancement efficiency were increased with decreasing porosity except porosity of 1.2%. The results also revealed that the heat transfer rate of the tube fitted with tapes were significantly increased with corresponding increase in friction factor. In the range of the present investigation, heat transfer rate and friction factor were obtained to be around 80 to 290% and 111 to 335% higher than those of the plain tube values, respectively. Based on constant blower power, the highest thermal enhancement efficiency of 1.44 was achieved. In addition, the empirical correlations of Nusselt number, friction factor and thermal enhancement efficiency were developed based on the experimental data.  相似文献   

8.
An analytical solution for fully developed forced convective heat transfer in an annulus partially filled with metallic foam was proposed. The inner surface attached with an annular metallic foam layer was exposed to constant heat flux while the outer surface was adiabatic. In the metallic foam region, the Brinkman–Darcy equation was used to describe the fluid flow and the thermal non-equilibrium model was employed to establish the heat transfer equations. At the porous-fluid interface, no-slip coupling conditions were utilized to couple flow and heat transfer of the porous and open regions. A closed-form analytical solution was obtained for velocity and temperature profiles. The explicit form of friction factor and the Nusselt (Nu) number were also provided. The solutions were validated by two extreme cases: the empty annulus and the annulus fully filled with metallic foam. The effects of key parameters on friction factor, Nu number, and j/f1/3 were examined. The relationship between flow heterogeneity and heat transfer was also discussed by introducing the flow heterogeneity coefficient. The porosity, pore density, and foam thickness for engineering applications were recommended. In the present analytical solution, a benchmark was also established for improving discretizing schemes in numerical works.  相似文献   

9.
The heat transfer coefficient between the absorber plate and air can be considerably increased by using artificial roughness on the underside of the absorber plate of a solar air heater duct. Under the present work, an experimental study has been carried out to investigate the effect of roughness and operating parameters on heat transfer and friction factor in a roughened duct provided with dimple-shape roughness geometry. The investigation has covered the range of Reynolds number (Re) from 2000 to 12,000, relative roughness height (e/D) from 0.018 to 0.037 and relative pitch (p/e) from 8 to 12. Based on the experimental data, values of Nusselt number (Nu) and friction factor (fr) have been determined for different values of roughness and operating parameters. In order to determine the enhancement in heat transfer and increment in friction factor values of Nusselt number and friction factor have been compared with those of smooth duct under similar flow conditions. Correlations for Nusselt number and friction factor have been developed for solar air heater duct provided such artificial roughness geometry.  相似文献   

10.
Experiments are conducted to assess turbulent forced convection heat transfer and friction loss behaviors for air flow through a constant heat flux channel fitted with different shaped ribs. The rib cross-sections used in the present study are triangular (isosceles), wedge (right-triangular) and rectangular shapes. Two rib arrangements, namely, in-line and staggered arrays, are introduced. Measurements are carried out for a rectangular channel of aspect ratio, AR = 15 and height, H = 20 mm with single rib height, e = 6 mm and rib pitch, P = 40 mm. The flow rate is in terms of Reynolds numbers based on the inlet hydraulic diameter of the channel in a range of 4000 to 16,000. The experimental results show a significant effect of the presence of the ribs on the heat transfer rate and friction loss over the smooth wall channel. The in-line rib arrangement provides higher heat transfer and friction loss than the staggered one for a similar mass flow rate. In comparison, the wedge rib pointing downstream yields the highest increase in both the Nusselt number and the friction factor but the triangular rib with staggered array shows better thermal performance over the others.  相似文献   

11.
Using the Galerkin weighted residual control volume finite element method, the effects of magnetic field and Joule heating on combined convection flow and heat transfer characteristics inside an octagonal vertical channel containing a heat-generating hollow circular pipe at the centre is performed. The flow enters at the bottom and exits from the top surface. All solid walls of the octagon are considered to be adiabatic. Graphical representation of streamlines, isotherms, average Nusselt number and maximum temperature of fluid for different combinations of Hartmann number (Ha), Joule heating parameter (J) and Richardson number (Ri) are displayed. The results indicate that the flow and thermal fields in the vertical channel depend markedly on the above mentioned parameters. In addition rate of heat transfer is obtained optimum in the absence of both MHD and Joule heating effects.  相似文献   

12.
Experimental investigations have been carried out to study the effect of combined wedge ribs and winglet type vortex generators (WVGs) on heat transfer and friction loss behaviors for turbulent airflow through a constant heat flux channel. To create a reverse flow in the channel, two types of wedge (right-triangle) ribs are introduced: wedge ribs pointing downstream and pointing upstream. The arrangements of both rib types placed inside the opposite channel walls are in-line and staggered arrays. To generate longitudinal vortex flows through the tested section, two pairs of the WVGs with the attack angle of 60° are mounted on the test channel entrance. The test channel has an aspect ratio, AR = 10 and height, H = 30 mm with a rib height, e/H = 0.2 and rib pitch, P/H = 1.33. The flow rate in terms of Reynolds numbers is based on the inlet hydraulic diameter of the channel ranging from 5000 to 22,000. The presence of the combined ribs and the WVGs shows the significant increase in heat transfer rate and friction loss over the smooth channel. The Nusselt number and friction factor values obtained from combined the ribs and the WVGs are found to be much higher than those from the ribs/WVGs alone. In conjunction with the WVGs, the in-line wedge pointing downstream provides the highest increase in both the heat transfer rate and the friction factor while the staggered wedge pointing upstream yields the best thermal performance.  相似文献   

13.
Convective heat transfer from a moving isothermal hot plate due to confined slot-jet impingement is investigated numerically. Two-dimensional turbulent flow is considered. The rectangular flow geometry consists of a confining adiabatic wall placed parallel to the moving impingement surface with the slot-jet located in the middle of the confining wall. The k ? ε turbulence model with enhanced wall treatment is used for the turbulence computations. The problem parameters are the jet exit Reynolds number, ranging from 5000 to 20,000, the normalized plate velocity, ranging from 0 to 2, and the normalized distance of separation between the impingement plate and the jet exit, ranging from 6 to 8. The computed flow patterns and isotherms for various combinations of these parameters are analysed to qualitatively understand the effect of the plate motion on the heat transfer phenomena. The distribution of the local and average Nusselt numbers and the skin friction coefficients at the hot moving surface for above combinations of the flow parameters are presented. Results are compared against corresponding cases for heat transfer from a stationary plate. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number as well as with the plate velocity. The average skin friction coefficient, on the other hand, is relatively insensitive to the Reynolds number but increases significantly with the plate velocity.  相似文献   

14.
The research work has been conducted to assess turbulent forced convection heat transfer and friction loss behaviors for airflow through a channel fitted with a multiple 60° V-baffle turbulator. Measurements have been carried out for the channel of aspect ratio, AR = 10 and height, H = 30 mm with three different baffle blockage ratios, (e/H = 0.10, 0.20 and 0.30) and three baffle pitch spacing ratios, (PR = P / H = 1, 2 and 3) while the transverse pitch of the V-baffle is set to 2H and kept constant. The air flow rate is in terms of Reynolds numbers based on the inlet hydraulic diameter of the test channel ranging from 5000 to 25,000. The experimental results show that the V-baffle provides the drastic increase in Nusselt number, friction factor and thermal enhancement factor values over the smooth wall channel due to better flow mixing from the formation of secondary flows induced by vortex flows generated by the V-baffle. In addition, substantial increases in Nusselt number and friction factor values are found for the rise in blockage ratio and/or for the decrease in pitch ratio values. Assessing thermal performance of the V-baffled channel, the use of the V-baffle with PR = 1 and e/H = 0.10 leads to maximum thermal enhancement factor of about 1.87 at lower Reynolds number.  相似文献   

15.
Present paper is performed to investigate the heat and exergy transfer characteristics of forced convection flow through a horizontal rectangular channel where open-cell metal foams of different pore densities such as 10, 20 and 30 PPI (per pore inches) were situated. All of the bounding walls of the channel are subjected to various uniform heat fluxes. The pressure drop and heat transfer characteristics are presented by two important parametric values, Nusselt number (NuH) and friction factor (f), as functions of Reynolds number (ReH) and the wall heat flux (q). The Reynolds number (ReH) based on the channel height of the rectangular channel is varied from 600 to 33?000, while the Grashof number (GrDh) ranged from approximately 105–107 depending on q. Based on the experimental data, new empirical correlations are constructed to link the NuH. The results of all cases are compared to that of the empty channel and the literature. It is found that the results are in good agreement with those cited in the references. The mean exergy transfer Nusselt number (Nue) based on the ReH, NuH, Pr and q for a rectangular channel with constant heat flux is presented and discussed.  相似文献   

16.
The present study examines the turbulent flow of mixed convection heat transfer enhancement within a rectangular channel considering three different novel shapes of ribs (smooth, scalene, and curved-side triangular). The investigations were conducted experimentally by developing a new test facility, while the numerical computations were carried out using the finite volume method. The experimental work involves constructing of the channel, ribs, and all equipment and measurement instruments. The numerical work is based on ANSYS FLUENT considering the kε turbulent model. The results are presented and compared in terms of Nusselt number, friction factor, and performance factors for Reynolds numbers ranging between 3000 and 12,000. By comparing the average values of the numerically obtained Nusselt number with experimental measurements, the data showed a close agreement with a maximum difference of 5%. It also found that scalene triangular ribs (STRs) provide better performance in terms of heat transfer, although introducing a slight increase in friction losses. STRs showed (20%) increase in Nusselt number compared with smooth channel, and 3%–6% increase in Nusselt number compared with curved-side triangular ribs (CTRs). In contrast, CTRs have a lower friction factor value of 5% compared with STRs at a low value of a Reynolds number of 3000. Furthermore, the Nusselt number changes significantly (250% increase) by increasing the value of the Reynolds number from 3000 to 12,000. A thermal performance factor of up to 1.28 was achieved for the STRs at the lowest range of Reynolds' number of 3000. The findings from the present study are of practical importance for industries requiring heat transfer enhancement techniques to improve heat transfer equipment performance.  相似文献   

17.
Three-dimensional helically dimpled tubes have been experimentally studied in order to obtain their heat transfer and isothermal friction characteristics. Using water and ethylene glycol as test fluids, a wide range of fluid flow conditions was covered: 2000<Re<100,000 and 2.5<Pr<100. An experimental study of 10 tubes with different geometric forms (dimple height h/d ranging from 0.08 to 0.12 and helical pitch p/d, from 0.65 to 1.1) offers insight into the influence of manufacturing parameters on tube thermohydraulic behaviour. The large amount of experimental data have been correlated so as to obtain easy to use expressions for Fanning friction factors and Nusselt numbers as functions of flow and geometry non-dimensional parameters. Performance evaluation criteria, commonly used in the enhanced heat transfer literature, were calculated in order to assess the real benefits offered by dimpled tubes.  相似文献   

18.
An experimental study was conducted to investigate the effects of dimple depth on the pressure loss and heat transfer characteristics in a pin fin-dimple channel, where dimples are located on the endwall transversely between the pin fins. The pin fin-dimple channels considered consist of ten rows of pin fin-dimple combined structure. The pin fin transverse spacing-to-diameter ratio S/D = 2.5, the streamwise spacing-to-diameter ratio X/D = 2.5, the pin fin height-to-diameter ratio H/D = 1.0. The dimples have a print diameter the same with the pin fins, but have three different dimple depth-to-diameter ratios, i.e. δ/D = 0.1, 0.2 and 0.3. The experimental results, mainly the average Nusselt number and friction factor, for the pin fin-dimple channels with various dimple depths have been obtained and compared with each other for the Reynolds number range of 8200–50,500. The study showed that, compared to the baseline pin fin channel, the pin fin-dimple channels have further improved convective heat transfer performance by up to 19.0%, and the pin fin-dimple channel with deeper dimples shows relatively higher Nusselt number values. The study still showed dimple depth-dependent pressure loss behaviors for the pin fin-dimple channels compared to the pin fin channel, and the pin fin-dimple channel with shallower dimples shows relatively lower friction factors by up to 17.6% over the studied Reynolds number range. Furthermore, three-dimensional conjugate computations have been carried out for similar experimental conditions, and the computations showed the detailed characteristics in the distribution of the velocity and turbulence level in the flow, which revealed the underlying mechanisms for the associated dimple depth-dependent pressure loss and heat transfer characteristics in the pin fin-dimple channels.  相似文献   

19.
The augmentation of heat transfer for turbulent fluid flow through a tube by using double helical tape inserts was investigated experimentally in the present work. The effects of insertion of the helical tape turbulators with different helix angles (9°, 15°, 21° and 28°) on heat transfer and pressure drop in the tube for Reynolds number ranging from 22,000 to 51,000 were examined. Experimental results showed that the heat transfer and thermal performance of the inserted tube were significantly increased compared to those of the plain tube. The study showed the Nussselt number, friction factor as well as thermal enhancement efficiency were increased with decreasing helix angles under the same operating conditions. The results indicated that the Nusselt number and friction factor were increased up to 305% and 170%, respectively, than those over the plain tube while the maximum thermal performance was found to be 215% for using the double helical tape insert with helix angle 9° at high Reynolds number. Furthermore, correlations of the Nusselt number and friction factor were developed in terms of the helix angle (α), Reynolds number (Re) and Prandtl number (Pr) based on the experimental data.  相似文献   

20.
A numerical work is performed to investigate the thermal‐hydraulic performance in a curved channel of a journal bearing equipped with oblique horseshoe baffles. Water, a working fluid, is passed through the curved channel at a constant temperature condition of 358 K. The effects of different parameters of baffles, that is, attack angle (α = 45°, 60°, and 90°) and the number of baffles (NB = 9 and 13 baffles), are examined. Influences of design parameters on heat transfer and friction performances are studied and displayed in terms of the Nusselt number, the friction factor, the Nusselt number enhancement ratio, and the thermal‐hydraulic performance factor (THPF). The numerical simulations present the flow structures of the tested channel in terms of velocity, isotherms, turbulent kinetic energy, and vorticity contours. The numerical results reveal that the adopted geometry of the curved channel with baffles yields a significant enhancement of heat transfer rate over the plain channel (without baffles), which is approximately 2.5 to 3.8 times. Also, the results show that the best condition to achieve maximum heat transfer is at angle α = 90°, NB = 13, and Re = 5000, compared with other conditions. Furthermore, the maximum THPF of the curved channel using baffles is 4.4 at the same condition. The results confirmed that the geometry of the baffles inside the curved channel has a remarkable impact on heat transfer improvement, accompanied by a reasonable increase in friction losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号