首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
针对AZ31B铸轧镁合金板材温热拉深性能差的问题,提出预变形温热拉深工艺。对AZ31B铸轧镁合金板材在20~220℃进行预变形温热拉深实验研究。结果表明:预变形使铸轧镁合金板材的拉深性能明显改善,使AZ31B铸轧镁合金板材具有最佳拉深性能的冲头温度范围(20~95℃);凹模温度选择在160~220℃范围内,铸轧镁合金板材具有良好的拉深性能,极限拉深比可达到2.26;随着拉深成形温度的升高,工件中动态再结晶晶粒数量逐渐增加,220℃拉深成形时工件中再结晶晶粒分布趋于均匀。  相似文献   

2.
提出基于固体颗粒介质成形(SGMF)工艺的镁合金板材差温拉深工艺,并展开试验研究。通过对AZ31B镁合金薄板进行差温拉深成形试验,研究了成形温度、拉深速度、压边力、压边间隙、凹模圆角和润滑条件对拉深性能的影响,确定AZ31B镁合金板料最佳成形工艺参数。结果表明:该工艺可显著提高镁合金板材的成形性能,成形温度及拉深速度对板料拉深性能影响较大,板料最佳成形温度区间为290~310℃,颗粒介质与板料理想温差为110~150℃;压边力和压边间隙对拉深性能产生联合影响;此外,凹模圆角和润滑条件也对拉深性能有一定的影响。当上述工艺参数达到最佳值时成功拉深出极限拉深比(LDR)为2.41的工件。  相似文献   

3.
镁合金AZ31B板材热拉深成形工艺参数优化   总被引:3,自引:1,他引:3  
在不同温度、不同压边力和不同拉深速度下,针对厚度为0.8mm的AZ31B镁合金板材的成形性能用有限元分析软件进行模拟与分析。在25~220℃的温度范围内,采用直径为140mm的坯料进行冲压成形,研究成形温度、拉深速度以及压边力对AZ31B镁合金板成形性能的影响。结果表明:成形温度为200℃时的极限拉深比达到了2.8;成形温度在200℃以下时,随着成形温度的升高。镁合金板材的成形性能越来越好。这证明AZ31B镁合金具有良好的热拉深性能;此外,拉深速度和压边力对AZ31B镁合金的拉深成形也有重要影响。  相似文献   

4.
AZ31镁合金板的热拉深性能   总被引:26,自引:3,他引:26  
通过热轧工艺制备了厚度为0.8 mm的AZ31镁合金薄板. 在不同温度和应变速率条件下进行了单向拉伸试验. 在50~240 ℃的温度范围内, 采用平底杯形冲头拉深试验研究了成形温度、拉深速度以及冲头温度对AZ31镁合金板热拉深工艺的影响. 结果表明 AZ31镁合金热轧薄板的RLD随温度的升高而明显增大; 在成形温度为200 ℃, 拉深速度为30 mm/min的条件下, 最大RLD可达2.65, 相应的高径比为1.4, 证明AZ31镁合金板具有良好的热拉深性能; 此外, 拉深速度和冲头温度对AZ31镁合金的拉深成形也有重要影响.  相似文献   

5.
针对AZ31B镁合金方盒形件进行拉深成形工艺试验,分析了单个工艺参数的变化对盒形件拉深成形过程的影响,在其他因素不变的条件下,凹模温度在150~300℃范围内,成形深度随温度升高而增大,在300℃时成形深度达到最大值;凸模温度保持在120℃左右,差温拉深效果较为明显;压边间隙调整到1.3t(t为板材厚度)时,拉深深度最大;拉深速度在30 mm·min-1时成形深度最大。确定了影响拉深成形深度的各工艺参数的先后顺序为:压边间隙、凸模温度、凹模温度和拉深速度。运用正交试验方法进行各工艺参数优化组合,结果表明,采用最优工艺参数组合可以提高AZ31B镁合金方盒形件拉深成形的成形深度。  相似文献   

6.
镁合金板材颗粒介质拉深工艺参数数值模拟   总被引:1,自引:0,他引:1  
为提高镁合金板材拉深性能,提出一种基于固体颗粒介质成形(Solid granules medium forming,SGMF)工艺的镁合金板材差温拉深工艺。以单向拉伸试验获取的AZ31B镁合金板材真应力—应变曲线和颗粒材料性能试验构建的介质线性Drucker-Prager本构模型为基础,采用有限元法对板材拉深成形进行热力耦合数值模拟并进行试验验证,研究压边力、压边间隙和温度对板材拉深性能的影响。结果表明:压边间隙和压边力联合控制比单纯控制压边力或是压边间隙更能有效地提高板材拉深性能;AZ31B镁合金板材在拉深过程中对温度有较强敏感性,板材变形温度为250~300℃,颗粒介质与其温差100~150℃时,板材达到最佳拉深性能;颗粒介质能够对工件筒壁部位提供轴向摩擦力,该摩擦力能有效提高材料拉深性能并保证板厚的均匀性,这是SGMF工艺的优势所在。  相似文献   

7.
AZ31镁合金板材温热冲压数值模拟与实验研究   总被引:9,自引:0,他引:9  
采用Gleeble3500热模拟实验机进行了单向拉伸实验,分析了AZ31镁合金板材的力学性能;以此实验数据为基础,对温热冲压过程进行了数值模拟,研究了拉深温度、压边力等工艺因素对镁合金板材成形性能的影响;通过极限拉深比实验,对数值模拟结果进行了实验验证。结果表明:在极限拉深温度150℃,极限拉深速度15 mm/s,固定压边力的工艺条件下,极限拉深比能够达到2.5。模拟结果表明:模拟结果和实验结果具有良好的一致性;采用变压边力可以明显提高板材的冲压性能,极限拉深比将达到5.0。  相似文献   

8.
对AZ31及ZE10镁合金板在20.300℃条件下进行了力学性能、弯曲及锥杯试验。研究结果表明:随着变形温度升高,镁合金板材强度下降而塑性、弯曲性能、“拉深+胀形”复合成形性能明显改善。ZE10镁合金板比AZ31镁合金板具有更好的弯曲及拉胀复合成形性能。200℃、250℃试验时,ZE10镁合金锥杯试样可顺利拉深进入锥杯底部圆孔而不出现裂纹。  相似文献   

9.
通过拉深成形试验研究了AZ31镁合金复杂形状壳体的成形性能,分析了成形温度、拉深速度、坯料加热时间及润滑等工艺参数对镁合金手枪壳体拉深成形件质量的影响规律.结果表明,合理的成形工艺参数:成形温度为290~350 ℃,拉深速度为0.1~0.2 mm/s,加热时间为5~10 min,润滑剂采用二硫化钼和机油的混合物,成功地加工出合格的复杂形状的镁合金手枪壳体.  相似文献   

10.
镁合金板材温热拉深成形工艺的研究   总被引:7,自引:0,他引:7  
通过镁合金板材温热拉深试验确定适合板材成形的温度范围,分析了压边力对坯料成形质量的影响,选择适合成形的工艺条件来有效避免工艺缺陷的产生。试验采用刚性压边装置对压边力进行调整,润滑剂采用了液态的PTFE,通过对成形工艺缺陷的分析,确定适合成形的最佳工艺参数,以提高拉深件的极限拉深比。结果表明:成形温度选择在105~170℃范围内,此时镁合金轧制板材具有良好的拉深性能,极限拉深比可达到2.44;坯料的加热时间不宜过长,否则会严重降低板材的塑性变形能力。  相似文献   

11.
高强度铝合金板材的温热介质充液成形研究   总被引:5,自引:0,他引:5  
在温度20℃~300℃的范围内,对厚度1.2mm的7B04-T6高强度铝合金薄板在应变速率分别为0.0006s-1、0.006s-1和0.06s-1的条件下进行了单拉试验,并在此基础上利用MSC.Marc有限元软件进行了筒形件温热介质充液成形的差温热力耦合数值模拟,研究了成形温度、冲压速度和液室压力对于成形性能的影响。结果表明,在冲压速度15mm/min以及液室压力1MPa的情况下,零件的最大成形高度由常温下的20.5mm提高到了300℃时的31.6mm。  相似文献   

12.
在25~870℃温度范围内进行了厚度为2.0 mm纯钼板的单向拉伸试验,建立了高温拉深有限元分析模型。通过数值模拟与试验对比分析,确定了纯钼板高温变形摩擦与温度的关系,研究了成形温度、润滑、压边间隙和模具尺寸对热拉深工艺的影响,并采用优化的工艺参数进行了平底杯形冲头热拉深试验。结果表明,润滑条件对纯钼板热拉深影响最显著,其次是成形温度;在成形温度870℃,拉深速度30 mm/min,有润滑,压边间隙2.5 mm的参数组合下,最大拉深比可达1.94。  相似文献   

13.
通过实验研究了拉深凹模温度、拉深速度、压边间隙及润滑条件对细晶5083铝合金非等温拉深工艺的影响。实验结果表明:细晶5083铝合金板料在凹模温度为250℃以上具有良好的拉深成形能力。当凹模温度为275℃时,极限拉深比达到2.9;当在较佳的凹模温度不同的拉深速度下进行拉深时,得出细晶5083铝合金非等温拉深工艺在一定的拉深速度范围内对应变速率不敏感,在压头速度≤2mm/min时均能拉深成功。考虑了润滑层厚度和材料在升温过程中的热膨胀性能,通过实验得出的最佳压边间隙为1.9mm。选用水基石墨作为润滑剂,润滑层厚度达到0.3mm左右时拉深能够成功进行。  相似文献   

14.
Warm forming of magnesium alloy sheet has attracted more and more attention in recent years. The formability of magnesium alloy sheet at elevated temperature depends on appropriate processes, and the fabrication of high-performance sheet. In this research, an AZ31 magnesium alloy sheet with excellent performances is fabricated by the cross-rolling and the uniform annealing treatments. The uniaxial tensile tests are conducted using a Gleeble 3500 thermal–mechanical simulator, and the mechanical properties of AZ31 magnesium alloy sheet are analyzed. Finally, some limiting drawing ratio (LDR) experiments are performed. The experiments show that the LDR can reach 2.0 at the forming temperature of 150 °C and the drawing velocity of 15 mm/s. A warm deep drawing process is also simulated by the finite element method. The influences of drawing temperature and blank holder force on the formability are numerically investigated. The simulation demonstrated that variable blank holder force technology can improve the LDR from 3.0 to 3.5, and decrease the wall thinning ratio from 15.21% to 12.35%.  相似文献   

15.
对6014铝合金进行了常温拉深试验,采用不同的拉深凸模速度,研究了该铝合金变形中的组织力学行为;对6016铝合金进行热拉伸试验,相同应变速率下采用不同的拉伸温度,研究了该铝合金在热拉伸过程中的组织力学行为。实验表明:随着凸模速度(10~30 mm·min~(-1))增加,6014铝合金的常温拉深深度增大;随着拉伸温度(400~550℃)升高,6016铝合金的硬度增大,且沿拉伸轴向硬度值波动越大;在应变速率为1 s~(-1)、温度为500℃下热拉伸,变形区有明显的动态再结晶过程,进一步升高温度会造成再结晶组织的晶粒粗化;6014和6016铝合金中均存在大量的Al、Fe、Si结晶相,但原始组织中6016的析出相更弥散,尺寸大小更均匀,更集中分布于晶界附近;比较6014铝合金常温拉深组织和6016铝合金热拉伸组织,冷变形后的晶粒组织更均匀,热拉伸后的晶粒尺寸差异很大,会降低材料变形后的力学性能。  相似文献   

16.
采用电子材料试验机,研究C276高温合金在变形温度650℃~750℃、拉伸速度0.35mm/min~35mm/min条件下的高温拉伸变形行为,分析了变形温度、应变速率对C276合金变形行为的作用及影响规律。结果表明,变形温度和应变速率对合金流变应力有显著影响,流变应力随变形温度升高而降低,随应变速率提高而增大。在变形温度700℃、拉伸速度0.35mm/min和3.5mm/min时,曲线呈现出明显的稳态流变应力特征,合金变形机制以动态回复为主;在变形温度750℃时,随着应变量的增加,合金内发生动态再结晶。利用Zener-Hollomon参数建立了C276合金的变形抗力模型,求得变形激活能为327.66kJ/mol。为C276合金的热加工工艺制定,提供了理论和试验的依据。  相似文献   

17.
研究了板坯加热温度、退火温度以及冷轧道次加工率对AZ31变形镁合金轧制能力的影响.结果表明,当加热温度为350℃,轧制速度为0.4m/s时,AZ31镁合金板材的热轧道次极限加工率可以达到34.62%(无裂纹)和59.23%(无表面裂纹);将热轧态板材分别在250℃~350℃温度,退火40min后,板材显微组织中晶粒大小均匀,维持在5μm~6μm水平;板材具有良好的综合力学性能,其抗拉强度为:230Pa~240MPa,屈服强度为:135MPa~175MPa,延伸率为:12%~15%.当采用350℃×40min退火后,板材在冷轧道次加工率为5%~10%时,总加工率可以达到40%以上.  相似文献   

18.
试验研究了不同卷取温度下,添加微量B元素对热轧SPHC带钢力学性能及时效性能的影响。结果表明:在低碳铝镇静钢中加入20×10-6的B元素,同时卷取温度提高到700 ℃,能够在不降低抗拉强度的基础上,有效降低热轧带钢屈服强度约20 MPa,降低屈强比到0.64左右,从而提高低碳钢深冲性能。同时,B元素的添加能够有效降低低碳钢的时效现象。  相似文献   

19.
在数值模拟研究压边力、毛料直径、凸凹模圆角半径、变形温度等对5A90铝锂合金板材拉深成形影响的基础上,采用正交试验设计方法对拉深成形工艺参数进行优化设计,并进行相应的拉深成形试验。研究表明,变形温度对拉深成形影响最显著,其次是毛料大小的影响,而变形速度和压边力的大小对拉深成形影响较小。通过对试验结果的计算、分析和总结,获得了5A90铝锂合金板材拉深成形的最佳工艺参数组合,在最佳工艺参数条件下,铝锂合金的极限拉深系数达到了0.45。  相似文献   

20.
超高强度钢热流变行为   总被引:7,自引:0,他引:7  
热冲压成形工艺是将冲压成形工艺和淬火工艺集成在同一工序中进行的新型成形工艺。根据热冲压工艺的时间-温度特征,采用Gleeble3800热模拟系统,在温度600℃~800℃和应变速率0.01/s~0.5/s下,对热冲压钢板USIBOR1500进行热拉伸实验,获得了相应的应力-应变曲线,并利用最小二乘法进行多元线性回归,建立USI-BOR1500钢板的热变形抗力数学模型。结果表明,USIBOR1500钢的热变形行为符合应变硬化加动态回复机制,变形温度和应变速率对其力学性能有很大的影响,变形温度的影响更为强烈。在热变形情况下,USIBOR1500钢板的抗拉强度大幅下降。建立的数学模型与实验数据吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号