首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA amplification is frequent in breast cancer and has been associated with specific clinicopathological parameters and/or worsened course of the disease. In the present work, we were interested in further defining the association linking the occurrence of DNA amplification to the emergence of specific breast tumor phenotype. To this aim, we studied by Southern blotting a total of 1875 breast tumor DNAs with 26 probes mapping at 15 distinct chromosomal localizations. Of the 26 loci tested, 11 loci showed elevated levels of amplification, 9 loci showed occasional and/or low level of DNA copy number increase, and 6 loci showed very rare or no variation. This allowed us to define six amplified domains mapping at 8p12, 8q24, 11q13, 12q13, 17q12, and 20q13.2, respectively. Over 60% of the tumors analyzed presented at least one amplification at one of these localizations. Amplifications often covered large regions of DNA and bore complex patterns involving coamplification of several colocalized markers. Statistical analysis revealed correlations associating DNA amplification with breast tumor phenotype, as well as sets of preferential coamplifications. Based on these correlations, we defined three subsets of breast cancer according to their patterns of DNA amplification. The first subset (group A) was organized around the amplifications at 11q13 and/or 8p12 and was predominantly composed of estrogen receptor-positive tumors and presented a large proportion of lobular cancers. The second subset (group B) was organized around the amplifications of ERBB2 and/or MYC. These tumors were mostly estrogen receptor-negative and of the ductal invasive type. The third subset (group C) corresponded to tumors in which no amplification was detected in the present screen. Tumors in this group were largely diploid and of low histopathological grading.  相似文献   

3.
4.
5.
The high incidence of allelic imbalance on the long arm of chromosome 16 in breast cancer suggests its involvement in the development and progression of the tumor. Several loss of heterozygosity (LOH) studies have led to the assignment of commonly deleted regions on 16q where tumor suppressor genes may be located. The most recurrent LOH regions have been 16q22.1 and 16q22.4-qter. The aim of this study was to gain further insight into the occurrence of one or multiple "smallest regions of overlap" on 16q in a new series of breast carcinomas. Hence, a detailed allelic imbalance map was constructed for 46 sporadic breast carcinomas, using 11 polymorphic microsatellite markers located on chromosome 16. Allelic imbalance of one or more markers on 16q was shown by 30 of the 46 tumors (65%). Among these 30 carcinomas, LOH on the long arm of chromosome 16 was detected at all informative loci in 19 (41%); 13 of them showed allelic imbalance on the long but not on the short arm, with the occurrence of variable "breakpoints" in the pericentromeric region. The partial allelic imbalance in 11 tumors involved either the 16q22.1-qter LOH region or interstitial LOH regions. A commonly deleted region was found between D16S421 and D16S289 on 16q22.1 in 29 of the 30 tumors. The present data argue in favor of an important involvement of a tumor suppressor gene mapping to 16q22.1 in the genesis or progression of breast cancer.  相似文献   

6.
DNA amplification seems to be particularly frequent in human breast tumours and has been associated with cancer evolution and aggressiveness. Recent data indicate that new events should be added to the list, such as the amplifications at chromosome 20q13 or the MDM2 gene. The present work aimed at determining the incidence and clinicopathological signification of these amplifications in a large series of breast and ovarian tumours. We tested 1371 breast and 179 ovarian tumours by Southern blotting and observed amplification of 20q13 in 5.4% breast and 2.8% ovarian carcinomas, whereas MDM2 was found amplified in 5.3% and 3.8% of breast and ovarian tumours respectively. MDM2 RNA expression levels were analysed in a subset of 57 breast tumours and overexpression was observed in 4/57 (7%) of the tumours. Elevated expression levels coincided with amplification of the gene. In breast cancer, 20q13 and MDM2 amplifications seem to define subsets of aggressive tumours. Indeed, 20q13 was correlated to axillary nodal involvement and occurred preferentially in younger patients (< 50 years). Furthermore, 20q13 correlated, as did MDM2 amplification, to aneuploidy. In parallel, we had also tested our tumour DNAs for amplification of CCND1, ERBB-2 and MYC, which made it possible to test for correlations with 20q13 or MDM2 amplifications. Whereas 20q13 showed a very strong correlation to CCND1 amplification, that of MDM2 was prevalent in MYC-amplified tumours. Interestingly, 20q13 and MDM2 amplifications showed some degree of correlation to each other, which may possibly be owing to the fact that both events occurred preferentially in aneuploid tumours. In ovarian cancer, no statistically significant correlation was observed. However, 20q13 amplification occurred preferentially in stage 3 tumours and MDM2 was correlated to ERBB-2 amplification. This may suggest that in ovarian tumours also, 20q13 and MDM2 amplifications occur in late or aggressive cancers.  相似文献   

7.
Gene amplification is a common genetic change in human cancer cells. Previously, we provided the first evidence for gene amplification at chromosome band 3q26 in squamous cell lung carcinoma. In this study, the following analyses were performed: (a) we evaluated biopsies and paraffin-embedded tissues of 16 additional squamous cell lung carcinomas for gene amplification using reverse chromosome painting. Of the 16 tumors, 3 tumors showed an amplification of the entire long arm of chromosome 3, and 3 tumors showed various amplifications on 3q, all of which involved chromosome band 3q26; (b) we tested eight genes encompassing region 3q25-qter in two different tumors to identify amplified genes on chromosome 3q. The genes SI, BCHE, and SLC2A2 were amplified in both tumors; and (c) we analyzed 15 additional paraffin-embedded tissues to determine the amplification frequency of these genes. Of the 15 squamous cell lung carcinomas, 6 showed amplification for at least 1 of the genes, with BCHE and SLC2A2 as the genes most frequently amplified. Together, our reverse chromosome painting data and our PCR analysis indicate gene amplification at 3q26 in 40% of all squamous cell lung carcinomas with BCHE and SLC2A2 as possible target genes of the amplification unit in squamous cell lung carcinoma.  相似文献   

8.
Chromosomal translocations leading to deregulation of specific oncogenes characterize approximately 50% of cases of diffuse large B-cell lymphomas (DLBL). To characterize additional genetic features that may be of value in delineating the clinical characteristics of DLBL, we studied a panel of 96 cases at diagnosis consecutively ascertained at the Memorial Sloan-Kettering Cancer Center (MSKCC) for incidence of gene amplification, a genetic abnormality previously shown to be associated with tumor progression and clinical outcome. A subset of 20 cases was subjected to comparative genomic hybridization (CGH) analysis, which identified nine sites of chromosomal amplification (1q21-23, 2p12-16, 8q24, 9q34, 12q12-14, 13q32, 16p12, 18q21-22, and 22q12). Candidate amplified genes mapped to these sites were selected for further analysis based on their known roles in lymphoid cell and lymphoma development, and/or history of amplification in tumors. Probes for six genes, which fulfilled these criteria, REL (2p12-16), MYC (8q24), BCL2 (18q21), GLI, CDK4, and MDM2 (12q13-14), were used in a quantitative Southern blotting analysis of the 96 DLBL DNAs. Each of these genes was amplified (four or more copies) with incidence ranging from 11% to 23%. This analysis is consistent with our previous finding that REL amplification is associated with extranodal presentation. In addition, BCL2 rearrangement and/or REL, MYC, BCL2, GLI, CDK4, and MDM2 amplification was associated with advanced stage disease. These data show, for the first time, that amplification of chromosomal regions and genes is a frequent phenomenon in DLBL and demonstrates their potential significance in lymphomagenesis.  相似文献   

9.
Amplification of chromosome 11q13 is frequently observed in human malignancies, including breast cancers. A candidate oncogene at this locus is the CCND1 gene, which encodes the cell cycle regulatory protein cyclin D1. Because published data on the relationship between 11q13 amplification and prognosis in breast cancer have been controversial, we investigated the clinical significance of CCND1 amplification and its association with established clinicopathological features of prognosis in 1014 primary breast cancer patients. Amplification of the CCND1 gene and the INT-2/FGF-3 gene, which also maps to 11q13, was 10% and 17%, respectively. There were no associations between CCND1 or INT-2 amplification and patient age, tumor size, tumor grade, axillary lymph node status, HER/neu amplification, MIB-1 monoclonal antibody to Ki67 antigen count, or p53 expression. CCND1 amplification was predominantly observed in hormone receptor-positive tumors; at a copy number >/=3, CCND1 amplification was significantly correlated with both estrogen receptor (ER; P = 0.036) and progesterone receptor (P = 0.012) positivity. After a median follow-up period of 66 months, CCND1 or INT-2 amplification was not associated with significant increases in relapse or death from breast cancer. However, in the node-negative and ER-positive subgroups, there was a trend for an increased relapse rate in patients with INT-2 or CCND1 amplification. Thus, in this study, assessment of CCND1 or INT-2 amplification at 11q13 by slot-blot hybridization was of little use in determining phenotype or disease outcome in the whole group of patients but had a potential role in identifying a subset of poor-prognosis patients within the node-negative or ER-positive, good-prognosis groups. Because the prevalence of CCND1 amplification is much lower than the reported prevalence of cyclin D1 overexpression, additional studies are required to determine the true prognostic significance of altered cyclin D1 expression in breast cancer.  相似文献   

10.
PURPOSE: It remains a challenge to predict which women with axillary node-negative (ANN) breast cancer at greatest risk of relapse may benefit most from adjuvant therapy. Increases in neu/erbB-2 have been implicated in breast cancer prognosis. Although overexpression has been investigated extensively, this study represents the first prospective assessment of the prognostic value of neu/erbB-2 DNA amplification in a cohort of women with newly diagnosed ANN. METHODS: A consecutive series of women was monitored for recurrence (median follow-up duration, 36 months) and tumors from 580 individuals were analyzed for amplification. The association of amplification with risk of recurrence was examined in survival analyses with traditional and histologic markers as prognostic factors. RESULTS: Neu/erbB-2 was amplified in 20% of cases. We found an increased risk of disease recurrence when neu/erbB-2 was amplified > or = twofold that persisted with adjustment for other prognostic factors (relative risk, 2.36; P = .002). We found some evidence that amplification was more important in patients who received chemotherapy compared with untreated patients. CONCLUSION: neu/erbB-2 amplification is an independent prognostic factor for risk of recurrence in ANN breast cancer. Women with tumors without neu/erbB-2 amplification have a good prognosis; aggressive therapy in this group is therefore difficult to justify. On the other hand, even with adjuvant chemotherapeutic treatment, women whose tumors exhibit neu/erbB-2 amplification have an increased risk of recurrence. We encourage a randomized trial to compare more aggressive adjuvant chemotherapy versus standard chemotherapy for ANN women whose tumors exhibit neu/erbB-2 amplification.  相似文献   

11.
12.
Forty-nine surgical specimens and nine germ cell tumor lines were analyzed by triple-color FISH using microdissected probes for the cytogenetic bands of chromosome arm 12p (12p11.2, p12, and p13). FISH analysis demonstrated amplification of material from all three bands in all tumors. This amplification was in the form of increased copy number of 12p or i(12p) and/or 12p amplified regions (AMP12p). The number of copies of 12p was variable (4-11 copies) from case to case but tended to remain relatively constant in all clones of the same tumor, even when the amplification took the form of an amplified region composed of 12p material. In tumors with multiple clones, i(12p) and AMP12p were never found in the same cell. No correlation was found between 12p copy number and tumor type. We describe, for the first time, a relative overrepresentation of 12p13 or 12p12-p13 regions in six tumors (two surgical samples and four cell lines), either as "partial 12p" (five cases) or within a 12p amplified region (one case). The ubiquitous amplification of all three 12p bands in germ-cell tumors supports the hypothesis that 12p harbors more than one gene important for oncogenesis of adult male germ-cell tumors, and that these genes may be located in different areas of 12p.  相似文献   

13.
PURPOSE: The diagnostic and prognostic significance of well-defined molecular markers was investigated in childhood primitive neuroectodermal tumors (PNET). MATERIALS AND METHODS: Using microsatellite analysis, Southern blot analysis, and fluorescence in situ hybridization (FISH), 30 primary tumors and six CSF metastasis specimens were analyzed for loss of heterozygosity (LOH) of chromosomes 1q31, 6q, 9q22, 10q, 11, 16q22, and 17p13.1 and/or high-level amplification of the c-myc gene. Experimental data were compared with clinical stage and outcome. RESULTS: LOH of chromosome 17p13.1 was found most frequently (14 of 30 tumors, six of six CSF metastasis specimens); LOH of chromosomes 10q, 16q22, 11, 6, 9q22, and 1q31 was observed in 20.6%, 20%, 14.3%, 12%, 10%, and 0%, respectively. Eight of 32 tumors and CSF specimens showed amplification of c-myc. All tumors with amplification of c-myc were resistant to therapy and had a fatal outcome (mean survival time, 9.3 months). Tumors that displayed LOH of chromosome 17p were associated with metastatic disease. The prognosis of these tumors was worse only when associated with amplification of c-myc. Three of three patients with LOH of 9q22 relapsed. CONCLUSION: In our study, amplification of c-myc was a poor-prognosis marker in PNET. LOH of chromosome 17p was associated with metastatic disease. Molecular analysis of primary tumors using these markers may be useful for stratification of children with PNET in future prospective studies. The other aberrations investigated were not of significant prognostic value, but may provide an entry point for future large-scale molecular studies.  相似文献   

14.
Ataxia telangiectasia (AT) is an autosomal recessive gene disorder, and ATM, a housekeeping gene, has been identified as the gene responsible for AT. Recently we found that another housekeeping gene, NPAT, is located upstream of ATM on human chromosome 11. The two housekeeping genes are transcribed in opposite directions and share a 0.5-kb 5' flanking sequence. The structure and organization of NPAT were determined by direct sequencing of cosmid clones carrying the gene and by application of the long and accurate (LA)-PCR method to amplify regions encompassing the exon/intron boundaries and all of the exons. The gene spans at least 44 kb and consists of 18 exons and 17 introns. It has been suggested that AT heterozygotes have an increased risk of developing cancer, especially breast cancer in women. Frequently, loss of heterozygosity at loci on 11q22-q24 has been observed in DNA isolated from tumors of the breast, uterine cervix, and colon, perhaps suggesting the location of a tumor suppressor gene in 11q22-q24. For investigation of the role of NPAT in AT and these tumors with allelic loss of 11q22-q24, appropriate primer sequences and PCR conditions for amplification of all the NPAT exons from genomic DNA were determined. We previously reported that no recombinations are found among Atm, Npat, and Acat1 (acetoacetyl-CoA thiolase) loci as determined by fine genetic linkage mapping of the mouse AT region. The results of the LA-PCR analysis using NPAT- and ACAT-specific primers and human genomic DNA allowed us to map ACAT 12 kb centromeric to NPAT.  相似文献   

15.
Human prostate cancers frequently show loss of heterozygosity (LOH) at loci on the long arm of chromosome 16 (16q). In this study, we analyzed prostate cancer specimens from 48 patients (Stage B, 20 cases; Stage C, 10 cases; cancer death, 18 cases) for allelic loss on 16q, using either restriction fragment length polymorphism (RFLP)- or polymerase chain reaction (PCR)-based methods. Allelic losses were observed in 20 (42%) of 48 cases, all of which were informative with at least one locus. Detailed deletion mapping identified three distinct commonly deleted regions on this chromosome arm: q22.1-q22.3, q23.2-q24.1, and q24.3-qter. On the basis of a published sex-averaged framework map, the estimated sizes of the commonly deleted regions were 4.7 (16q22.1-q22.3), 17.2 (16q23.2-q24.1) and 8.4 cM (16q24.3-qter). Allelic losses on 16q were observed more frequently in the cancer-death cases (11 of 18; 61%) than in early-stage tumor cases (9 of 30; 30%; P < 0.05). In 7 of 11 patients from whom DNA was available from metastatic cancers as well as from normal tissues and primary tumors, the primary cancer foci had no detectable abnormality of 16q, but the metastatic tumors showed LOH. These results suggest that inactivation of tumor suppressor genes on 16q plays an important role in the progression of prostate cancer. We also analyzed exons 5-8 of the E-cadherin gene, located at 16q22.1, in tumor DNA by means of PCR-single strand conformation polymorphism and direct sequencing, but we detected no somatic mutations in this candidate gene.  相似文献   

16.
The first gene found to be amplified in human glioblastomas was EGFR at 7p12. More recently the MET gene at 7q31 was also reported amplified. We have studied chromosome 7 in a series of 47 glioblastomas by FISH, RFLP and microsatellite analysis. Four per cent (2/47) had 1 centromere, 26% (12/47) 2, 32% (15/47) 3, 4% (2/47) 4, and 34% (16/47) had subpopulations with variable numbers of chromosome 7 centromeres. In 25 of the 47 tumors (53%) the pattern of allelic imbalance observed at each informative locus was similar and in accord with the FISH data, indicating loss or gain of complete chromosome copies. In 32% of tumors (15/47) varying allelic imbalance was seen at different loci along the chromosome indicative of loss or gain of parts of chromosome 7 on a background of disomy, trisomy, tetrasomy, or polysomy. Amplification was studied in an extended series of 121 glioblastomas, and was seen at the 7p12 region in 47 tumors (39%). Forty-two tumors showed amplification of EGFR and 12 of these had extensive amplicons including a number of adjacent loci, always involving only 1 allele. The amplicons of 5 tumors (11%) did not include EGFR, indicating that other unidentified genes in the region are targeted for amplification. Amplification of MET was not found. The findings show that copy number changes of chromosome 7 are common and that a number of genes may be targeted for amplification at 7p12 in glioblastomas.  相似文献   

17.
Our previous reports have shown that two thirds of 4-nitroquinoline-1-oxide (4NQO)-induced murine oral squamous cell carcinomas (SCC) have Hras1 mutations. Loss of heterozygosity (LOH) involving the distal portion of chromosome (Chr) 7 occurred in half of the tumors with Hras1 mutations. Here, we demonstrate that five of six tumors with LOH have 4-8-fold amplification involving the distal portion of Chr 7 (7F4). Ccnd1. Fgf4 and Fgf3, within the most telomeric region of Chr 7 (70.5 cM), are co-amplified. The region is syntenic to a previously identified human amplicon at 11q13. Only one out of eight tumors without LOH at Chr 7 had twofold amplification; the other seven had no detectable amplification. Significant amplification is restricted to the chromosome with the Hras1 mutation. Gene amplification occurred without overexpression since only one of five tumors with amplification and one of six tumors without Ccnd1 amplification expressed increased protein. Although amplification of 11q13 occurs rather frequently in human tumors, 4NQO-induced oral cavity tumors in inbred mice are the first example of a murine tumor with consistent amplification. Our observations are strikingly similar to human head and neck SCC where overexpression of genes within the 11q13 amplicon is inconsistently detected. The amplification of genes localized to human 11q13 and the syntenic region on murine Chr 7 during tumorigenesis suggests that similar structural elements are present which predispose these regions to amplification during malignant transformation.  相似文献   

18.
In breast cancer, DNA amplification of the oncogene c-erbB-2, encoding for the p185 protein, is associated with a poor prognosis. A retrospective study on a population of 220 cases of primary breast cancer permitted a quantitative measure of p185 oncoprotein overexpression by an immunoenzymetric assay and the determination of c-erbB-2 amplification by the Southern blot method. A correlation existed between the two measurements (r=0.85) using the double cut-off: DNA 2 copies and p185 400 U/mg protein, and only 2.7% of the cases were discordant. 13.2% of the tumors showed p185 overexpression. The percentage of tumors overexpressing p185 was significantly different between the groups with amplified and non-amplified c-erbB-2. We observed a significant correlation between p185 levels and tumor grade (p=0.03), and an inverse correlation with hormonal receptors (p=0.0001). The p185 assay could be an additional prognostic factor to better define patient subgroups with node negative, grade II, and positive or negative hormonal receptors.  相似文献   

19.
Gene amplifications of c-myc, K-sam, and c-met were examined in cancer nuclei isolated from 154 primary gastric adenocarcinomas by fluorescence in situ hybridization (FISH) using cosmid probes for 8q24 (c-myc locus) and 7q31 (c-met), as well as a DNA probe for K-sam synthesized by PCR. The results were compared with those of Southern blot analysis. Dual-color FISH using gene locus and chromosome-specific probes detected gene amplifications of c-myc in 24 tumors (15.5%), c-met in 6 tumors (3.9%), and K-sam in 3 tumors (2.9%). The six tumors with c-myc amplification had also been found to have amplified c-erbB-2 in our previous study, and coamplification of c-myc and c-met was found in two other tumors. This technique also differentiated the amplified genes on the homogeneous staining region (HSR) and on double minute chromosomes (DMs) in metaphase spreads and interphase nuclei of cell lines established from poorly differentiated adenocarcinomas, KATO III, SNU 16, and HSC 39. Examination of FISH images of these cell lines suggested that the high-level amplifications of c-myc found in primary tumors occurred mainly on DM in four tumors and on HSR in one, and those of K-sam occured on DM in two tumors and on HSR in one. No high-level amplification of c-met was found. These high-level amplifications were also detected in formalin-fixed, paraffin-embedded tissues from primary gastric tumors and metastatic lymph nodes, in some of which heterogeneity of gene amplification was demonstrated within the same tumor. We conclude that FISH is an important tool for examining the proto-oncogene aberrations in intact cells in solid tumors.  相似文献   

20.
Previous studies have shown that the 1q31-32 region frequently presents allelic imbalance (AI) in various neoplastic diseases, such as breast cancer, medulloblastoma, male germ cell tumors, and renal collecting duct carcinoma, suggesting the presence of a tumor suppressor gene in this location. We used 19 informative microsatellite markers to analyze 33 primary breast tumors for AI in the 1q31-32 region. Our results demonstrate a 10-cM critical region of AI that is present in more than 60% of the tumors. This region is located proximal to the REN locus and is flanked by the CACNL1A3 and D1S2655 markers. Most important, the critical region of AI coincides with a female hot spot of recombination, suggesting a possible correlation between the two regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号