首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly conducting and transparent cadmium oxide films have been deposited on Corning 7059 glass substrates by ion-beam sputtering and by spray pyrolysis. The electrical and optical properties of CdO films prepared by the two techniques are similar. Typical films of 0.5 μm thickness have electrical resistivities of (2–5) × 10-3 ohm-cm, carrier concentrations of approximately 1020 cm-3, and an optical transmission of higher than 70% in the wavelength range of 600–900 nm. An optical bandgap of 2.4–2.42 eV was deduced from the optical transmission data.  相似文献   

2.
Thin films of cadmium oxide have been produced by dc reactive magnetron sputtering in nitrogen and oxygen atmosphere. The structural, optical, and electrical characterization of these films are investigated. Structural analysis indicates that the films are polycrystalline and cubic. Composition analysis by Rutherford backscattering spectrometry has been made and it is found that the films contain excess cadmium and deficient oxygen. It is observed from the optical properties that the films possess a transmittance of about 85% in the visible and near infrared regions of the spectrum and direct bandgap values in the range 2.50 to 2.68 eV for films of thicknesses 146 to 177 nm. Electrical measurements point out that the films have resistivity, carrier concentration, and mobility in the range 2.65 to 6.64 × 10-6 Ωm, 1.60 to 2.35 × 1026 m-3, and 57.65 to 100.48 × 10−4 m2 v−1 s−1 respectively.  相似文献   

3.
An effective method of dopant incorporation in rf sputtered ZnO film is reported. The electrical, optical and structural properties of zinc doped ZnO films are investigated. Electron mobility of∼10 cm2 /V-sec and electron concentration of∼1019 cm−3 have been measured at room temperature. X-ray diffraction data obtained on films prepared on Corning 7059 glass show (002) peak, dominating. The high electrical conductivity and transmission makes ZnO films very attractive as a component for heterojunction solar cells.  相似文献   

4.
We investigated the properties of indium-doped zinc oxide layers grown by metalorganic chemical vapor deposition on semi-insulating GaN(0001) templates. Specular and transparent films were grown with n-type carrier concentrations up to 1.82 × 1019 cm−3 as determined by Hall measurements, and all In-doped films had carrier concentrations significantly higher than that of a comparable undoped film. For low In flows, the carrier concentration increased accordingly with trimethyl-indium (TMIn) flow until a maximum carrier concentration of 1.82 × 1019 cm−3 was realized. For higher In flows, the carrier concentration decreased with increasing TMIn flow rate. Sheet resistance as low as 185 Ω/sq was achieved for the In-doped films, which is a significant decrease from that of a comparable undoped ZnO film. Our n-type doping studies show that In is an effective dopant for controlling the n-type conductivity of ZnO.  相似文献   

5.
The study of modifications in structural, optical and electrical properties of vacuum evaporated zinc oxide thin films on doping with III group oxides namely aluminum oxide, gallium oxide and indium oxide are reported. It was observed that all the films have transmittance ranging from 85 to 95%. The variation in optical properties with dopants is discussed. On doping the film with III group oxides, the conductivity of the films showed an excellent improvement of the order of 103 Ω?1 cm?1. The measurements of activation energy showed that all three oxide doped films have 2 donor levels below the conduction band.  相似文献   

6.
Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90℃.The effects of sodium thiosulfate on the electrochemical deposition of ZnO were investigated by cyclic voltammetry and chronoamperometry techniques.Deposited films were obtained at -0:60 V vs.SCE and characterized by XRD,SEM,FTIR, optical,photoelectrochemical and electrical measurements.Thickness of the deposited film was measured to be 357 nm.X-ray diffraction results indicated that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along (002) plane.FTIR results confirmed the presence of ZnO films at peak 558 cm-1.SEM images showed uniform,compact morphology without any cracks and films composed of large flower-like ZnO agglomerates with star-shape.Optical properties of ZnO reveal a high optical transmission (>80%) and high absorption coefficient (α>105 cm-1)in visible region.The optical energy band gap was found to be 3.28 eV.Photoelectrochemical measurements indicated that the ZnO films had n-type semiconductor conduction.Electrical properties of ZnO films showed a low electrical resistivity of 6.54 Ω·cm,carrier concentration of -1.3×1017cm-3 and mobility of 7.35 cm2V-1s-1.  相似文献   

7.
The influence of radio frequency(RF) power on the properties of magnetron sputtered amorphous indium gallium zinc oxide(a-IGZO) thin films and the related thin-film transistor(TFT) devices is investigated comprehensively.A series of a-IGZO thin films prepared with magnetron sputtering at various RF powers are examined.The results prove that the deposition rate sensitively depends on RF power.In addition,the carrier concentration increases from 0.91 x 1019 to 2.15 x 1019 cm-3 with the RF power rising from 40 to 80 W,which may account for the corresponding decrease in the resistivity of the a-IGZO thin films.No evident impacts of RF power are observed on the surface roughness,crystalline nature and stoichiometry of the a-IGZO samples.On the other hand,optical transmittance is apparently influenced by RF power where the extracted optical band-gap value increases from 3.48 to 3.56 eV with RF power varying from 40 to 80 W,as is supposed to result from the carrierinduced band-filling effect.The rise in RF power can also affect the performance of a-IGZO TFTs,in particular by increasing the field-effect mobility clearly,which is assumed to be due to the alteration of the extended states in a-IGZO thin films.  相似文献   

8.
Zinc oxide (ZnO) was largely studied in various applications such as photovoltaic conversion, optoelectronics and piezoelectric, because of its interesting physical properties (morphological, structural, optical and electrical). The present work deals with the preparation of zinc oxide thin films (ZnO) deposited by the spray pyrolysis method. The starting solution was zinc chloride (ZnCl2). Effects of solution molarity and substrate temperature on films properties were investigated. All films deposited were characterized by various techniques such as X-ray diffraction for structural characterizations, profilometry for thickness measurements, UV–vis transmission spectrophotometry for optical properties and the four probes conductivity measurements for electrical characterization. The X-ray diffraction (XRD) patterns show that the films deposited are polycrystalline with (0 0 2) plan as preferential orientation. The UV–vis spectroscopy confirms the possibility of good transparent ZnO thin films deposition with an average transmission of about ∼85% in the visible region. However, the measured electrical resistivities of the deposited films were in the order of 104 Ω cm  相似文献   

9.
Structural, electrical, and optical properties of undoped and Zn doped lead sulfide (PbS) thin films are benign reported in this paper. The subjected films were grown on glass substrates at 25 °C by a chemical bath deposition (CBD) method. The concentration of Zn in the deposition bath represented by the ratio [Zn2+]/[Pb2+] was varied from 0% to 5%. It was found that the film׳s grains decreased in size with increasing Zn content in the film. XRD data showed the polycrystalline nature of the film its crystal orientation peak intensities decreased with higher doping concentration of Zn. Atomic force microscopy (AFM) measurements revealed that the surface roughness of the films decreased due to zinc doping as well. However, with increasing of the dopant concentration from 0% to 5%, the average transmittance of the films varied over the range of 35–75%. The estimated optical band (Eg) gaps of undoped and Zn doped PbS thin films were in the range of 0.72–1.46 eV. Hall Effect measurements electrical resistivity, carrier concentration and Hall mobility have been determined for the titled film as functions on the Zn content within the film׳s textures. The overall result of this work suggested that the Zn:PbS film is a good candidate as an absorber layer in the modern solar cell devices.  相似文献   

10.
Mg- and Si-doped GaN and AlGaN films were grown by metalorganic chemical vapor deposition and characterized by room-temperature photoluminescence and Hall-effect measurements. We show that the p-type carrier concentration resulting from Mg incorporation in GaN:Mg films exhibits a nonlinear dependence both on growth temperature and growth pressure. For GaN and AlGaN, n-type doping due to Si incorporation was found to be a linear function of the silane molar flow. Mg-doped GaN layers with 300K hole concentrations p ∼2×1018 cm−3 and Si-doped GaN films with electron concentrations n∼1×1019 cm−3 have been grown. N-type Al0.10Ga0.90N:Si films with resistivities as low as p ∼6.6×10−3 Ω-cm have been measured.  相似文献   

11.
Highly transparent and conducting undoped zinc oxide films have been obtained with a best resistivity of ~1.1 × 10-3 Ω cm, a carrier density of ~1.5 × 1020 cm?3 and a mobility of ~38 cm2V?1s ?1. These were produced by activated reactive evaporation at a deposition rate of 2 to 8Å/s with a substrate temperature ≤200° C. The films deposited by this process were found to have resistivities that were thickness independent and also were relatively insensitive to deposition parameters. In terms of conductivity, it was found that films deposited at higher temperatures (T > 300°+ C) were always inferior to the films deposited below 200° C. High temperature vacuum annealing (350° C) significantly degraded the resistivity of the undoped films deposited at low temperature; this was attributable to a drop in both the electron concentration and the mobility. Aluminum doping was found to be able to stabilize the electron concentration while the drop in mobility was found to be related to the choice of substrate.  相似文献   

12.
Amorphous zinc oxide thin films are obtained by thermally evaporating pure zinc oxide powder. Films obtained have an excellent conductivity of 90 ???1 cm?1 with transparency of up to 90% in the visible region. On doping with gallium oxide a great improvement in the conductivity of up to 8.7 × 103 ???1 cm?1 is observed and the optical band gap of the films is decreased from 3.25 to 3.2 eV, retaining the transparency. Measurements of activation energy show that the doped ZnO film has one donor level at 68 meV and other at 26 meV bellow the conduction band.  相似文献   

13.
Manganese-doped zinc oxide (Mn-doped ZnO) thin films were prepared using chemical bath deposition (CBD), and the impacts of the manganese dopant concentration on the structure, electrical resistivity, optical transmission, and magnetic properties were investigated using x-ray diffractometry, Hall-effect measurements, ultraviolet–visible–near-infrared (UV–Vis–IR) spectrophotometry, and vibrating sample magnetometry (VSM), respectively. The concentration of the manganese dopant in the ZnO thin film critically impacted the resulting properties, and the 4.0 at.% Mn-doped ZnO film had a resistivity of 5.8 × 10−2 Ωcm, transmittance of 75.6% in the visible light range, and bandgap of 3.30 eV when the film was annealed at 600°C in an Ar + H2 atmosphere. Annealing the film could enhance its magnetic properties such that the film had a saturation magnetization of 21.0 emu/cm3 and a coercivity of 45.7 Oe after annealing at 600°C. Because of these electrical, optical, and magnetic properties, Mn-doped thin films are promising for use in spintronic devices.  相似文献   

14.
Pulsed laser deposition was used to grow magnesium zinc oxide thin films on amorphous fused silica substrates at several temperatures between room temperature and 750°C. In this study, the effect of growth temperature on the optical properties of textured Mg x Zn1−x O thin films was examined. The optical properties of the films were measured using absorption and photoluminescence spectrometry. Absorption spectra revealed that the bandgap values of textured Mg x Zn1−x O thin films were enhanced in films grown at higher temperatures. The absorption spectra near the absorption edge were fitted using the Urbach equation in order to investigate the effects of growth temperature on exponential band tail and bandgap. The photoluminescence spectra were measured for magnesium zinc oxide thin films deposited at 250°C, 350°C, 450°C, 550°C, and 650°C. The film grown at 350°C provided the highest excitonic peak intensity. On the other hand, the film grown at 250°C exhibited the lowest excitonic peak intensity. The excitonic peak intensity was considerably reduced in magnesium zinc oxide thin films grown at temperatures greater than 350°C. The ability to perform substrate-temperature-dependent bandgap engineering of Mg x Zn1−x O will enable use of this material in next-generation optical and optoelectronic devices.  相似文献   

15.
Fluorine doped tin oxide (FTO) films were fabricated on a glass substrate by a green sol–gel dip-coating process. Non-toxic SnF2 was used as fluorine source to replace toxic HF or NH4F. Effect of SnF2 content, 0–10 mol%, on structure, electrical resistivity, and optical transmittance of the films were investigated using X-ray diffraction, Hall effect measurements, and UV–vis spectra. Structural analysis revealed that the films are polycrystalline with a tetragonal crystal structure. Grain size varies from 43 to 21 nm with increasing fluorine concentration, which in fact critically impacts resultant electrical and optical properties. The 500 °C-annealed FTO film containing 6 mol% SnF2 shows the lowest electrical resistivity 7.0×10−4 Ω cm, carrier concentration 1.1×1021 cm−3, Hall mobility 8.1 cm2V−1 s−1, optical transmittance 90.1% and optical band-gap 3.91 eV. The 6 mol% SnF2 added film has the highest figure of merit 2.43×10−2 Ω−1 which is four times higher than that of un-doped FTO films. Because of the promising electrical and optical properties, F-doped thin films prepared by this green process are well-suited for use in all aspects of transparent conducting oxide.  相似文献   

16.
Highly oriented crystalline aluminum doped zinc oxide (AZO) films were sputter deposited on glass substrates and a systematic investigation on the as deposited and etched films was reported for its further application in silicon thin film solar cell. Influence of the deposition pressure (from 2 to 8 mTorr) and post-annealing temperature (at 400 °C for 5 min) on the structural, optical and electrical properties of the as-deposited and etched samples were analyzed. The optimum condition for its reproducibility and large area deposition is determined and found that the depositions made at 8 mTorr at 200 W having the distance from source to substrate of 9 cm. All the AZO films exhibited a c-axis preferred orientation perpendicular to the substrate and their crystallinity was improved after annealing. From the XRD pattern the grain size, stress and strain of the films were evaluated and there is no drastic variation. Optical transmittance, resistivity, Hall mobility and carrier concentration for the as deposited and etched-annealed films were found to improve from 79 to 82%; 2.97 to 3.14×10−4 Ω cm; 25 to 38 cm2/V s; 8.39 to 5.96×1020/cm3 respectively. Based on the triangle diagram between figure of merit and Hall mobility, we obtained a balance of point between the electrical and optical properties to select the deposition condition of film for device application.  相似文献   

17.
Increasing the conductivity of polycrystalline zinc oxide films without impacting the transparency is a key aspect in the race to find affordable and high quality material as replacement of indium‐containing oxides. Usually, ZnO film conductivity is provided by a high doping and electron concentration, detrimental to transparency, because of free carrier absorption. Here we show that hydrogen post‐deposition plasma treatment applied to ZnO films prepared by metalorganic low‐pressure chemical vapor deposition allows a relaxation of the constraints of the conductivity/transparency trade‐off. Upon treatment, an increase in electron concentration and Hall mobility is observed. The mobility reaches high values of 58 and 46 cm2V?1s?1 for 2‐μm‐ and 350‐nm‐thick films, respectively, without altering the visible range transparency. From a combination of opto‐electronic measurements, hydrogen is found, in particular, to reduce electron trap density at grain boundaries. After treatment, the values for intragrain or optical mobility are found similar to Hall mobility, and therefore, electron conduction is found to be no longer limited by the phenomenon of grain boundary scattering. This allows to achieve mobilities close to 60 cm2V?1s?1, even in ultra‐transparent films with carrier concentration as low as 1019 cm?3.  相似文献   

18.
In this work, undoped and Zn-doped copper oxide films were deposited on glass substrates at a substrate temperature of 250 ± 5°C by using an ultrasonic spray pyrolysis technique. Electrical, optical, and structural properties of the films were investigated, and the effect of Zn incorporation on these properties are presented. The variations of electrical conductivities and electrical conduction mechanisms of all films were investigated in the dark and in the light. Optical properties of the produced films were analyzed by transmission, linear absorption coefficient, and reflection spectra. The band gaps of the films were determined by an optical method. The film structures were studied by x-ray diffraction. To obtain information about structural properties in detail, the grain size (D), dislocation density (δ), and lattice parameters for preferential orientations were calculated. The elemental analyses were performed using energy-dispersive x-ray spectroscopy. It was concluded that Zn has a strong effect, especially on the electrical and structural properties, and the undoped and Zn-doped copper oxide (at 3%) films may be used as absorbing layers in solar cells due to their low resistivities and suitable linear absorption coefficient values.  相似文献   

19.
High-quality epitaxial magnesium zinc oxide (MgxZn1-xO) alloy thin films were grown on sapphire (α-Al2O3 (0001)) substrates using pulsed laser deposition. The structural and optical properties of these hexagonal films were determined using transmission electron microscopy (TEM), x-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), absorption, and photoluminescence measurements. XRD and TEM data reveal that magnesium zinc oxide alloy films, grown by domain matching epitaxy, exhibited the following relationships: MgZnO[0001] ∥ α-Al2O3 [0001] and MgZnO[01 0] ∥ α-Al2O3 [2 0]. RBS data demonstrate that a maximum magnesium content of x=0.34 can be obtained in hexagonal ZnxMg1-xO thin films. This value is significantly higher than the thermodynamic limitation of x=0.04. The absorption spectra of magnesium zinc oxide alloy films obtained at room temperature demonstrate significant excitonic behavior. The exciton binding energies have been extracted from the absorption data. Values of the exciton bandgap as a function of magnesium content were determined by fitting the bandgap energies using polynomial fitting. The ZnxMg1−xO alloy thin films demonstrate bright room-temperature luminescence and significant excitonic behavior. A shift in the excitonic emission peak as a function of magnesium content was observed.  相似文献   

20.
The N2-doped 3C-SiC thin films have been grown by low-pressure, chemical vapor deposition (LPCVD) on amorphous Si3N4/p-Si (111) substrates using the single, organosilane-precursor trimethylsilane [(CH3)3SiH]. The effects of N2 flow rate and growth temperature on the electrical properties of SiC films were investigated by Hall-effect measurements. The electron-carrier concentration is between 1017–1018/cm3. The lowest resistivities at 400 K and 300 K are 1.12×10−2 and 1.18×10−1 cm, respectively. The corresponding sheet resistances are 75.02 Ω/□ and 790.36 Ω/□. The SiC film structure was studied by x-ray diffraction. The 3C-SiC films oriented in the 〈111〉 direction with a 2ϑ peak at 35.5° and line widths between 0.18–0.25° were obtained. The SiC/Si3N4 interface is very smooth and free of voids. The fabrication of microelectromechanical (MEMS) structures incorporating the SiC films is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号