首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using three-dimensional rotational X-ray angiography (3DRA), three-dimensional (3-D) information of the vasculature can be obtained prior to endovascular interventions. However, during interventions, the radiologist has to rely on fluoroscopy images to manipulate the guide wire. In order to take full advantage of the 3-D information from 3DRA data during endovascular interventions, a method is presented that yields an integrated display of the position of the guide wire and vasculature in 3-D. The method relies on an automated method that tracks the guide wire simultaneously in biplane fluoroscopy images. Based on the calibrated geometry of the C-arm, the 3-D guide-wire position is determined and visualized in the 3-D coordinate system of the vasculature. The method is evaluated in an intracranial anthropomorphic vascular phantom. The influence of the angle between projections, distortion correction of the projection images, and accuracy of geometry knowledge on the accuracy of 3-D guide-wire reconstruction from biplane images is determined. If the calibrated geometry information is used and the images are corrected for distortion, a mean distance to the reference standard of 0.42 mm and a tip distance of 0.65 mm is found, which means that accurate guide-wire reconstruction from biplane images can be performed.  相似文献   

2.
Distal locking is one of the most difficult steps in intramedullary nailing. Numerous methods can help the surgeon, but all are time-consuming and involve much irradiation. We have developed and tested a new method based on only two fluoroscopic shots that do not need to be taken in the axes of the holes. This avoids requiring the presence of an experienced fluoroscopy operator to accurately adjust the imaging device in front of the locking holes, and decreases the exposure to radiation of the patient and medical team. A 3-D model of the distal nail and of its locking holes was constructed from a pair of calibrated fluoroscopic views. Prior to this, the contours of the nail and locking holes projections had to be determined. A 3-D optical localizer allowed the tracking of reference frames fixed to the nail, imaging device, and drilling motor. A navigation system based on the model guided the surgeon during distal targeting. The robustness, accuracy, and duration of the technique were evaluated in laboratory. The range of acceptable orientations of the X-ray beam has also been determined. Twenty drilling tests were carried out on sawbones. The accuracy and the duration required by our system to perform the distal targeting shows potential suitability for clinical use. The drill passed through the nail locking holes for all of them. The accuracy was about 1.5 mm in translation and 1 degree in rotation. The total time spent on drilling did not exceed 15 min. The system was also assessed in vivo on three patients.  相似文献   

3.
Fluoroscopic overlay images rendered from preoperative volumetric data can provide additional anatomical details to guide physicians during catheter ablation procedures for treatment of atrial fibrillation (AFib). As these overlay images are often compromised by cardiac and respiratory motion, motion compensation methods are needed to keep the overlay images in sync with the fluoroscopic images. So far, these approaches have either required simultaneous biplane imaging for 3-D motion compensation, or in case of monoplane X-ray imaging, provided only a limited 2-D functionality. To overcome the downsides of the previously suggested methods, we propose an approach that facilitates a full 3-D motion compensation even if only monoplane X-ray images are available. To this end, we use a training phase that employs a biplane sequence to establish a patient specific motion model. Afterwards, a constrained model-based 2-D/3-D registration method is used to track a circumferential mapping catheter. This device is commonly used for AFib catheter ablation procedures. Based on the experiments on real patient data, we found that our constrained monoplane 2-D/3-D registration outperformed the unconstrained counterpart and yielded an average 2-D tracking error of 0.6 mm and an average 3-D tracking error of 1.6 mm. The unconstrained 2-D/3-D registration technique yielded a similar 2-D performance, but the 3-D tracking error increased to 3.2 mm mostly due to wrongly estimated 3-D motion components in X-ray view direction. Compared to the conventional 2-D monoplane method, the proposed method provides a more seamless workflow by removing the need for catheter model re-initialization otherwise required when the C-arm view orientation changes. In addition, the proposed method can be straightforwardly combined with the previously introduced biplane motion compensation technique to obtain a good trade-off between accuracy and radiation dose reduction.  相似文献   

4.
3-D/2-D registration of CT and MR to X-ray images   总被引:6,自引:0,他引:6  
A crucial part of image-guided therapy is registration of preoperative and intraoperative images, by which the precise position and orientation of the patient's anatomy is determined in three dimensions. This paper presents a novel approach to register three-dimensional (3-D) computed tomography (CT) or magnetic resonance (MR) images to one or more two-dimensional (2-D) X-ray images. The registration is based solely on the information present in 2-D and 3-D images. It does not require fiducial markers, intraoperative X-ray image segmentation, or timely construction of digitally reconstructed radiographs. The originality of the approach is in using normals to bone surfaces, preoperatively defined in 3-D MR or CT data, and gradients of intraoperative X-ray images at locations defined by the X-ray source and 3-D surface points. The registration is concerned with finding the rigid transformation of a CT or MR volume, which provides the best match between surface normals and back projected gradients, considering their amplitudes and orientations. We have thoroughly validated our registration method by using MR, CT, and X-ray images of a cadaveric lumbar spine phantom for which "gold standard" registration was established by means of fiducial markers, and its accuracy assessed by target registration error. Volumes of interest, containing single vertebrae L1-L5, were registered to different pairs of X-ray images from different starting positions, chosen randomly and uniformly around the "gold standard" position. CT/X-ray (MR/ X-ray) registration, which is fast, was successful in more than 91% (82% except for L1) of trials if started from the "gold standard" translated or rotated for less than 6 mm or 17 degrees (3 mm or 8.6 degrees), respectively. Root-mean-square target registration errors were below 0.5 mm for the CT to X-ray registration and below 1.4 mm for MR to X-ray registration.  相似文献   

5.
The lateral bending test is routinely used by clinicians for the preoperative assessment of spinal mobility. The evaluation of bending motion is usually based on the qualitative analysis of a two-dimensional (2-D) antero-posterior X-ray image. The aim of this paper is to introduce a novel three-dimensional (3-D) reconstruction technique that is a prerequisite for the quantitative 3-D analysis of lateral bending motion. An algorithm was developed for the 3-D reconstruction of the spine from a single X-ray image. The X-ray is calibrated using a small calibration object and an explicit calibration algorithm. The information contained in the single X-ray is completed by registering a priori 3-D geometric models of individual vertebrae. Part of the error yielded by the 3-D/2-D registration is corrected by a vertebral alignment constraint that aims to minimize intervertebral dislocations. Three-dimensional models of 15 different scoliosis patients, obtained from a standard stereo-radiographic 3-D reconstruction, were used in simulation and validation experiments. Experimental results show that the new method is robust and accurate. With pessimistic levels of simulated noise, the average root mean square reconstruction error is 2.89 mm, which is appropriate for common clinical applications.  相似文献   

6.
It has been recognized that one of the most difficult steps in intramedullary nailing of femoral shaft fractures is the distal locking - the insertion of distal transverse interlocking screws, for which it is necessary to know the positions and orientations of the distal locking holes (DLHs) of the intramedullary nail (IMN). This paper presents a robust and accurate approach for solving this problem based on two calibrated and registered fluoroscopic images. The problem is formulated as a two-stage model-based optimal fitting process. The first stage, nail detection, automatically estimates the axis of the distal part of the IMN (DP-IMN) by iteratively fitting a cylindrical model to the images. The second stage, pose recovery, resolves the translations and the rotations of the DLHs around the estimated axis by iteratively fitting the geometrical models of the DLHs to the images. An iterative best matched projection point (IBMPP) algorithm is combined with random sample strategies to effectively and robustly solve the fitting problems in both stages. We designed and conducted comprehensive experiments to validate the robustness and the accuracy of the present approach. Our in vitro experiments show on average less than 14 s execution time on a Linux machine, a mean angular error of 0.48 degrees (std = 0.21 degrees ), and a mean translational error of 0.09 mm (std = 0.041 mm). We conclude that the present approach is fast, robust, and accurate for distal locking applications.  相似文献   

7.
Displaying anatomical and physiological information derived from preoperative medical images in the operating room is critical in image-guided neurosurgery. This paper presents a new approach referred to as augmented virtuality (AV) for displaying intraoperative views of the operative field over three-dimensional (3-D) multimodal preoperative images onto an external screen during surgery. A calibrated stereovision system was set up between the surgical microscope and the binocular tubes. Three-dimensional surface meshes of the operative field were then generated using stereopsis. These reconstructed 3-D surface meshes were directly displayed without any additional geometrical transform over preoperative images of the patient in the physical space. Performance evaluation was achieved using a physical skull phantom. Accuracy of the reconstruction method itself was shown to be within 1 mm (median: 0.76 mm +/- 0.27), whereas accuracy of the overall approach was shown to be within 3 mm (median: 2.29 mm +/- 0.59), including the image-to-physical space registration error. We report the results of six surgical cases where AV was used in conjunction with augmented reality. AV not only enabled vision beyond the cortical surface but also gave an overview of the surgical area. This approach facilitated understanding of the spatial relationship between the operative field and the preoperative multimodal 3-D images of the patient.  相似文献   

8.
In image-guided therapy, high-quality preoperative images serve for planning and simulation, and intraoperatively as "background", onto which models of surgical instruments or radiation beams are projected. The link between a preoperative image and intraoperative physical space of the patient is established by image-to-patient registration. In this paper, we present a novel 3-D/2-D registration method. First, a 3-D image is reconstructed from a few 2-D X-ray images and next, the preoperative 3-D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure (SM). Because the quality of the reconstructed image is generally low, we introduce a novel SM, which is able to cope with low image quality as well as with different imaging modalities. The novel 3-D/2-D registration method has been evaluated and compared to the gradient-based method (GBM) using standardized evaluation methodology and publicly available 3-D computed tomography (CT), 3-D rotational X-ray (3DRX), and magnetic resonance (MR) and 2-D X-ray images of two spine phantoms, for which gold standard registrations were known. For each of the 3DRX, CT, or MR images and each set of X-ray images, 1600 registrations were performed from starting positions, defined as the mean target registration error (mTRE), randomly generated and uniformly distributed in the interval of 0-20 mm around the gold standard. The capture range was defined as the distance from gold standard for which the final TRE was less than 2 mm in at least 95% of all cases. In terms of success rate, as the function of initial misalignment and capture range the proposed method outperformed the GBM. TREs of the novel method and the GBM were approximately the same. For the registration of 3DRX and CT images to X-ray images as few as 2-3 X-ray views were sufficient to obtain approximately 0.4 mm TREs, 7-9 mm capture range, and 80%-90% of successful registrations. To obtain similar results for MR to X-ray registrations, an image, reconstructed from at least 11 X-ray images was required. Reconstructions from more than 11 images had no effect on the registration results.  相似文献   

9.
A method has been developed to reconstruct three-dimensional (3-D) surfaces from two-dimensional (2-D) projection data. It is used to produce individualized boundary element models, consisting of thorax and lung surfaces, for electro- and magnetocardiographic inverse problems. Two orthogonal projections are utilized. A geometrical prior model, built using segmented magnetic resonance images, is deformed according to profiles segmented from projection images. In the authors' method, virtual X-ray images of the prior model are first constructed by simulating real X-ray imaging. The 2-D profiles of the model are segmented from the projections and elastically matched with the profiles segmented from patient data. The displacement vectors produced by the elastic 2-D matching are back projected onto the 3-D surface of the prior model. Finally, the model is deformed, using the back-projected vectors. Two different deformation methods are proposed. The accuracy of the method is validated by a simulation. The average reconstruction error of a thorax and lungs was 1.22 voxels, corresponding to about 5 mm  相似文献   

10.
11.
This paper describes augmented reality visualization for the guidance of breast-conservative cancer surgery using ultrasonic images acquired in the operating room just before surgical resection. By combining an optical three-dimensional (3-D) position sensor, the position and orientation of each ultrasonic cross section are precisely measured to reconstruct geometrically accurate 3-D tumor models from the acquired ultrasonic images. Similarly, the 3-D position and orientation of a video camera are obtained to integrate video and ultrasonic images in a geometrically accurate manner. Superimposing the 3-D tumor models onto live video images of the patient's breast enables the surgeon to perceive the exact 3-D position of the tumor, including irregular cancer invasions which cannot be perceived by touch, as if it were visible through the breast skin. Using the resultant visualization, the surgeon can determine the region for surgical resection in a more objective and accurate manner, thereby minimizing the risk of a relapse and maximizing breast conservation. The system was shown to be effective in experiments using phantom and clinical data  相似文献   

12.
A method is introduced to examine the geometrical accuracy of the three-dimensional (3-D) representation of coronary arteries from multiple (two and more) calibrated two-dimensional (2-D) angiographic projections. When involving more then two projections, (multiprojection modeling) a novel procedure is presented that consists of fully automated centerline and width determination in all available projections based on the information provided by the semi-automated centerline detection in two initial calibrated projections. The accuracy of the 3-D coronary modeling approach is determined by a quantitative examination of the 3-D centerline point position and the 3-D cross sectional area of the reconstructed objects. The measurements are based on the analysis of calibrated phantom and calibrated coronary 2-D projection data. From this analysis a confidence region (alpha degrees approximately equal to [35 degrees - 145 degrees]) for the angular distance of two initial projection images is determined for which the modeling procedure is sufficiently accurate for the applied system. Within this angular border range the centerline position error is less then 0.8 mm, in terms of the Euclidean distance to a predefined ground truth. When involving more projections using our new procedure, experiments show that when the initial pair of projection images has an angular distance in the range alpha degrees approximately equal to [35 degrees - 145 degrees], the centerlines in all other projections (gamma = 0 degrees - 180 degrees) were indicated very precisely without any additional centering procedure. When involving additional projection images in the modeling procedure a more realistic shape of the structure can be provided. In case of the concave segment, however, the involvement of multiple projections does not necessarily provide a more realistic shape of the reconstructed structure.  相似文献   

13.
Accurate and fast localization of a predefined target region inside the patient is an important component of many image-guided therapy procedures. This problem is commonly solved by registration of intraoperative 2-D projection images to 3-D preoperative images. If the patient is not fixed during the intervention, the 2-D image acquisition is repeated several times during the procedure, and the registration problem can be cast instead as a 3-D tracking problem. To solve the 3-D problem, we propose in this paper to apply 2-D region tracking to first recover the components of the transformation that are in-plane to the projections. The 2-D motion estimates of all projections are backprojected into 3-D space, where they are then combined into a consistent estimate of the 3-D motion. We compare this method to intensity-based 2-D to 3-D registration and a combination of 2-D motion backprojection followed by a 2-D to 3-D registration stage. Using clinical data with a fiducial marker-based gold-standard transformation, we show that our method is capable of accurately tracking vertebral targets in 3-D from 2-D motion measured in X-ray projection images. Using a standard tracking algorithm (hyperplane tracking), tracking is achieved at video frame rates but fails relatively often (32% of all frames tracked with target registration error (TRE) better than 1.2 mm, 82% of all frames tracked with TRE better than 2.4 mm). With intensity-based 2-D to 2-D image registration using normalized mutual information (NMI) and pattern intensity (PI), accuracy and robustness are substantially improved. NMI tracked 82% of all frames in our data with TRE better than 1.2 mm and 96% of all frames with TRE better than 2.4 mm. This comes at the cost of a reduced frame rate, 1.7 s average processing time per frame and projection device. Results using PI were slightly more accurate, but required on average 5.4 s time per frame. These results are still substantially faster than 2-D to 3-D registration. We conclude that motion backprojection from 2-D motion tracking is an accurate and efficient method for tracking 3-D target motion, but tracking 2-D motion accurately and robustly remains a challenge.  相似文献   

14.
Optimal CT scanning plan for long-bone 3-D reconstruction   总被引:1,自引:0,他引:1  
Digital computed tomographic (CT) data are widely used in three-dimensional (3-D) construction of bone geometry and density features for 3-D modelling purposes. During in vivo CT data acquisition the number of scans must be limited in order to protect patients from the risks related to X-ray absorption. The aim of this work is to automatically define, given a finite number of CT slices, the scanning plan which returns the optimal 3-D reconstruction of a bone segment from in vivo acquired CT images. An optimization algorithm based on a Discard-Insert-Exchange technique has been developed. In the proposed method the optimal scanning sequence is searched by minimizing the overall reconstruction error of a two-dimensional (2-D) prescanning image: an anterior-posterior (AP) X-ray projection of the bone segment. This approach has been validated in vitro on 3 different femurs. The 3-D reconstruction errors obtained through the optimization of the scanning plan on the 3-D prescanning images and on the corresponding 3-D data sets have been compared. 2-D and 3-D data sets have been reconstructed by linear interpolation along the longitudinal axis. Results show that direct 3-D optimization yields root mean square reconstruction errors which are only 4%-7% lower than the 2-D-optimized plan, thus proving that 2-D-optimization provides a good suboptimal scanning plan for 3-D reconstruction. Further on, 3-D reconstruction errors given by the optimized scanning plan and a standard radiological protocol for long bones have been compared. Results show that the optimized plan yields 20%-50% lower 3-D reconstruction errors  相似文献   

15.
Most X-ray CT scanners require a few seconds to produce a single two-dimensional (2-D) image of a cross section of the body. The accuracy of full three-dimensional (3-D) images of the body synthesized from a contiguous set of 2-D images produced by sequential CT scanning of adjacent body slices is limited by 1) slice-to-slice registration (positioning of patient); 2) slice thickness; and 3) motion, both voluntary and involuntary, which occurs during the total time required to scan all slices. Therefore, this method is inadequate for true dynamic 3-D imaging of moving organs like the heart, lungs, and circulation. To circumvent these problems, the Dynamic Spatial Reconstructor (DSR) was designed by the Biodynamics Research Unit at the Mayo Clinic to provide synchronous volume imaging, that is stop-action (1/100 s), high-repetition rate (up to 60/s), simultaneous scanning of many parallel thin cross sections (up to 240, each 0.45 mm thick, 0.9 mm apart) spanning the entire anatomic extent of the bodily organ(s)of interest. These capabilities are achieved by using multiple X-ray sources and multiple 2-D fluoroscopic video camera assemblies on a continually rotating gantry. Desired tradeoffs between temporal, spatial, and density resolution can be achieved by retrospective selection and processing of appropriate subsets of the total data recorded during a continuous DSR scan sequence.  相似文献   

16.
Describes an extrinsic-point-based, interactive image-guided neurosurgical system designed at Vanderbilt University, Nashville, TN, as part of a collaborative effort among the Departments of Neurological Surgery, Computer Science, and Biomedical Engineering. Multimodal image-to-image (II) and image-to-physical (IP) registration is accomplished using implantable markers. Physical space tracking is accomplished with optical triangulation. The authors investigate the theoretical accuracy of point-based registration using numerical simulations, the experimental accuracy of their system using data obtained with a phantom, and the clinical accuracy of their system using data acquired in a prospective clinical trial by 6 neurosurgeons at 4 medical centers from 158 patients undergoing craniotomies to respect cerebral lesions. The authors can determine the position of their markers with an error of approximately 0.4 mm in X-ray computed tomography (CT) and magnetic resonance (MR) images and 0.3 mm in physical space. The theoretical registration error using 4 such markers distributed around the head in a configuration that is clinically practical is approximately 0.5-0.6 mm. The mean CT-physical registration error for the: phantom experiments is 0.5 mm and for the clinical data obtained with rigid head fixation during scanning is 0.7 mm. The mean CT-MR registration error for the clinical data obtained without rigid head fixation during scanning is 1.4 mm, which is the highest mean error that the authors observed. These theoretical and experimental findings indicate that this system is an accurate navigational aid that can provide real-time feedback to the surgeon about anatomical structures encountered in the surgical field  相似文献   

17.
This paper presents a novel image-guided robot-based system to assist orthopedic surgeons in performing distal locking of long bone intramedullary nails. The system consists of a bone-mounted miniature robot fitted with a drill guide that provides rigid mechanical guidance for hand-held drilling of the distal screws' pilot holes. The robot is automatically positioned so that the drill guide and nail distal locking axes coincide, using a single fluoroscopic X-ray image. Since the robot is rigidly attached to the intramedullary nail or bone, no leg immobilization or real-time tracking is required. We describe the system and protocol and present a method for accurate and robust drill guide and nail hole localization and registration. The in vitro system accuracy experiments for fronto-parallel viewing show a mean angular error of 1.3 degrees (std = 0.4 degrees ) between the computed drill guide axes and the actual locking holes axes, and a mean 3.0 mm error (std = 1.1 mm) in the entry and exit drill point, which is adequate for successfully locking the nail.  相似文献   

18.
The projection X-ray microscope utilises a very small X-ray source emitted from a thin (0.1-3 microm) target metal film excited by the focused electron beam of a scanning electron microscope. When an object is placed just below the target metal film, the diverging X-rays enlarge the shadow of the object. Because no X-ray optics such as a zone-plate is used, the focal depth is, in principle, infinitely large. We exploited this to apply projection X-ray microscopy to three-dimensional (3-D) structure analysis by means of cone-beam computed tomography. The projection images of a small arthropod (Pseudocneorhinus bifasciatus, 5 mm in length), was recorded at 3 degrees increments over the whole range (360 degrees) of a stepping-motor-controlled sample rotator. A 3-D image was reconstructed from corn-beam projections using a filtered back-projection algorithm. The reconstructed 3-D image showed in detail the internal structure of an opaque object.  相似文献   

19.
X-ray fluoroscopically guided cardiac electrophysiological procedures are routinely carried out for diagnosis and treatment of cardiac arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of static 3-D roadmaps derived from preprocedural volumetric data can be used to add anatomical information. However, the registration between the 3-D roadmap and the 2-D X-ray image can be compromised by patient respiratory motion. Three methods were designed and evaluated to correct for respiratory motion using features in the 2-D X-ray images. The first method is based on tracking either the diaphragm or the heart border using the image intensity in a region of interest. The second method detects the tracheal bifurcation using the generalized Hough transform and a 3-D model derived from 3-D preoperative volumetric data. The third method is based on tracking the coronary sinus (CS) catheter. This method uses blob detection to find all possible catheter electrodes in the X-ray image. A cost function is applied to select one CS catheter from all catheter-like objects. All three methods were applied to X-ray images from 18 patients undergoing radiofrequency ablation for the treatment of atrial fibrillation. The 2-D target registration errors (TRE) at the pulmonary veins were calculated to validate the methods. A TRE of 1.6 mm ± 0.8 mm was achieved for the diaphragm tracking; 1.7 mm ± 0.9 mm for heart border tracking, 1.9 mm ± 1.0 mm for trachea tracking, and 1.8 mm ± 0.9 mm for CS catheter tracking. We present a comprehensive comparison between the techniques in terms of robustness, as computed by tracking errors, and accuracy, as computed by TRE using two independent approaches.  相似文献   

20.
Intraoperative freehand three-dimensional (3-D) ultrasound (3D-US) has been proposed as a noninvasive method for registering bones to a preoperative computed tomography image or computer-generated bone model during computer-aided orthopedic surgery (CAOS). In this technique, an US probe is tracked by a 3-D position sensor and acts as a percutaneous device for localizing the bone surface. However, variations in the acoustic properties of soft tissue, such as the average speed of sound, can introduce significant errors in the bone depth estimated from US images, which limits registration accuracy. We describe a new self-calibrating approach to US-based bone registration that addresses this problem, and demonstrate its application within a standard registration scheme. Using realistic US image data acquired from 6 femurs and 3 pelves of intact human cadavers, and accurate Gold Standard registration transformations calculated using bone-implanted fiducial markers, we show that self-calibrating registration is significantly more accurate than a standard method, yielding an average root mean squared target registration error of 1.6 mm. We conclude that self-calibrating registration results in significant improvements in registration accuracy for CAOS applications over conventional approaches where calibration parameters of the 3D-US system remain fixed to values determined using a preoperative phantom-based calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号