首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modes of As(III) sorption onto two-line ferrihydrite (Fh), hematite (Hm), goethite (Gt), and lepidocrocite (Lp) have been investigated under anoxic condition using X-ray absorption spectroscopy (XAS). X-ray absorption near-edge structure spectroscopy (XANES) indicates that the absence of oxygen minimized As(III) oxidation due to Fenton reactions. Extended X-ray absorption fine structure spectroscopy (EXAFS) indicates thatAs(III)forms similar inner-sphere surface complexes on two-line ferrihydrite and hematite that differ from those formed on goethite and lepidocrocite. At high surface coverage, the dominant complex types on Fh and Hm are bidentate mononuclear edge-sharing (2E) and bidentate binuclear corner-sharing (2C), with As-Fe distances of 2.90 +/- 0.05 and 3.35 +/- 0.05 A, respectively. The same surface complexes are observed for ferrihydrite at low surface coverage. In contrast, As(III) forms dominantly bidentate binuclear corner-sharing (2C) sorption complexes on Gt and Lp [d(As-Fe) = 3.3-3.4 A], with a minor amount of monodentate mononuclear corner-sharing (1V) complexes [d(As-Fe) = 3.5-3.6 A]. Bidentate mononuclear edge-sharing (2E) complexes are virtually absent in Gt and Lp at the high surface coverages that were investigated in the present study. These results are compared with available literature data and discussed in terms of the reactivity of iron(III) (oxyhydr)oxide surface sites.  相似文献   

2.
The speciation of As and Fe was studied during the oxidation of Fe(II)-As(III) solutions by combining XAS analysis at both the Fe and As K-edges. Fe(II) and As(III) were first hydrolyzed to pH 7 under anoxic conditions; the precipitate was then allowed to oxidize in ambient air for 33 h under vigorous stirring. EXAFS analysis at the As K-edge shows clear evidence of formation of inner-sphere complexes between As(III) and Fe(II), i.e., before any oxidation. Inner-sphere complexes were also observed when Fe became sufficiently oxidized, in the form of edge-sharing and double-corner linkages between AsIIIO3 pyramids and FeIIIO6 octahedra. XAS analyses at the Fe K-edge reveal that the presence of As(III) in the solution limits the polymerization of Fe(II) and the formation of green rust and inhibits the formation of goethite and lepidocrocite. Indeed, As(III) accelerates the Fe(II) oxidation kinetics and leads to the formation of nanosized Fe-As subunits of amorphous aggregates. These observations, rather than a presumed weaker affinity of As(III) for iron oxyhydroxides, might explain why As(III) is more difficult to remove than As(V) by aerating reducing groundwater.  相似文献   

3.
Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy for Bangladesh groundwater drinking supplies. EC is based on the rapid in situ dissolution of a sacrificial Fe(0) anode to generate iron precipitates with a high arsenic sorption affinity. We used X-ray absorption spectroscopy (XAS) to investigate the local coordination environment (<4.0 ?) of Fe and As in EC precipitates generated in synthetic Bangladesh groundwater (SBGW). Fe and As K-edge EXAFS spectra were found to be similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm(2)) used to generate samples. Shell-by-shell fits of the Fe K-edge EXAFS spectra indicated that EC precipitates consist of primarily edge-sharing FeO(6) octahedra. The absence of corner-sharing FeO(6) octahedra implies that EC precipitates resemble nanoscale clusters (polymers) of edge-sharing octahedra that efficiently bind arsenic. Shell-by-shell fits of As K-edge EXAFS spectra show that arsenic, initially present as a mixture of As(III) and As(V), forms primarily binuclear, corner-sharing As(V) surface complexes on EC precipitates. This specific coordination geometry prevents the formation of FeO(6) corner-sharing linkages. Phosphate and silicate, abundant in SBGW, likely influence the structure of EC precipitates in a similar way by preventing FeO(6) corner-sharing linkages. This study provides a better understanding of the structure, reactivity, and colloidal stability of EC precipitates and the behavior of arsenic during EC. The results also offer useful constraints for predicting arsenic remobilization during the long-term disposal of EC sludge.  相似文献   

4.
Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These data suggest that in situ redox cycling may serve as an effective method for  相似文献   

5.
Biogeochemical iron cycling often generates systems where aqueous Fe(II) and solid Fe(III) oxides coexist. Reactions between these species result in iron oxide surface and phase transformations, iron isotope fractionation, and redox transformations of many contaminant species. Fe(II)-induced recrystallization of goethite and hematite has recently been shown to cause the repartitioning of Ni(II) at the mineral-water interface, with adsorbed Ni incorporating into the iron oxide structure and preincorporated Ni released back into aqueous solution. However, the effect of Fe(II) on the fate and speciation of redox inactive species incompatible with iron oxide structures is unclear. Arsenate sorption to hematite and goethite in the presence of aqueous Fe(II) was studied to determine whether Fe(II) causes substantial changes in the sorption mechanisms of such incompatible species. Sorption isotherms reveal that Fe(II) minimally alters macroscopic arsenate sorption behavior except at circumneutral pH in the presence of elevated concentrations (10?3 M) of Fe(II) and at high arsenate loadings, where a clear signature of precipitation is observed. Powder X-ray diffraction demonstrates that the ferrous arsenate mineral symplesite precipitates under such conditions. Extended X-ray absorption fine structure spectroscopy shows that outside this precipitation regime arsenate surface complexation mechanisms are unaffected by Fe(II). In addition, arsenate was found to suppress Fe(II) sorption through competitive adsorption processes before the onset of symplesite precipitation. This study demonstrates that the sorption of species incompatible with iron oxide structure is not substantially affected by Fe(II) but that such species may potentially interfere with Fe(II)-iron oxide reactions via competitive adsorption.  相似文献   

6.
Understanding in situ metalloid surface speciation on mineral surfaces is critical to predicting the bioavailability in surface and subsurface environments. In this study, Mo K-edge X-ray absorption spectroscopy (XAS) was used to elucidate Mo(VI) surface speciation at the goethite-water interface. Effects of pH and loading levels were investigated. X-ray absorption near edge structure (XANES) analysis indicated that the Mo(VI) coordination environment changes from tetrahedral to octahedral with decreasing pH. At near neutral pH, Mo(VI) predominantly remains as tetrahedral molecules, forming inner-sphere surface species via corner- and edge-sharing attachment with iron octahedral structures (interatomic distance of Mo-Fe (R(Mo-Fe)) at ~2.8 and ~3.4 ?, respectively). In contrast, a mixture of surface species comprising tetrahedrally and octahedrally coordinated Mo(VI) exists at pH ~3-4. While the same Mo(VI) tetrahedral surface species are present at acidic pH, there was an additional MoO(6) polymer attachment on iron octahedral structures, resulting in a R(Mo-Fe) at 3.53 ?. The coordination number (CN) of a Mo-Mo backscatterer gradually increased with increasing loading level, suggesting the formation of surface polymerization. Overall, there seems to be a transition from Mo(VI) tetrahedral to octahedral coordination environment with decreasing pH. The XAS findings further support a Mo(VI) inner-sphere adsorption mechanism that was previously suggested in the pressure-jump relaxation study by Zhang and Sparks (Soil Sci. Soc. Am. J. 1989, 53 (4), 1028-1034). pH-Dependent multinuclear Mo(VI) surface speciation may be important in predicting Mo(VI) transport process in the soil-water environment.  相似文献   

7.
In this research, traditional macroscopic studies were complemented with XAS analyses to elucidate the mechanisms controlling Pb(II) sorption onto ferrihydrite as a function of pH, ionic strength, and adsorbate concentrations. Analyses of XANES and XAFS studies demonstrate that Pb(II) ions predominantly sorb onto ferrihydrite via inner-sphere complexation, not retaining their primary hydration shell upon sorption. At higher pH values (pH > or = 5.0), edge-sharing bidentate complexes are mainly formed on the oxide surface with two Fe atoms located at approximately 3.34 A. In contrast, XAS studies on Pb(II) sorption onto ferrihydrite, at pH 4.5, reveal two distinct Pb-Fe bond average radial distances of 3.34 and 3.89 A, suggestive of a mixture of monodentate and bidentate sorption complexes present at the oxide surface. Interestingly, at constant pH, the configuration of the sorption complex is independent of the adsorbate concentration. Hence, Pb(II) sorption to a highly disordered adsorbent such as ferrihydrite can be described by one average type of mechanism. Overall, this information will aid scientists and engineers in improving the current models that predict and manage the fate of toxic metals, such as Pb(II), in the aquatic and soil environments.  相似文献   

8.
Coprecipitation of arsenic with iron or aluminum occurs in natural environments and is a remediation technology used to remove this toxic metalloid from drinking water and hydrometallurgical solutions. In this work, we studied the nature, mineralogy, and reactivity toward phosphate of iron-arsenate coprecipitates formed at As(V)/Fe(III) molar ratios (R) of 0, 0.01, or 0.1 and at pH 4.0, 7.0, and 10.0 aged for 30 or 210 days at 50 degrees C and studied the desorption of arsenate. At R = 0, goethite and hematite (with ferrihydrite at pH 4.0 and 7.0) crystallized, whereas at R = 0.01, the formation of ferrihydrite increased and hematite crystallization was favored over goethite. In some samples, the morphology of hematite changed from rounded platy crystals to ellipsoids. At R = 0.1, ferrihydrite formed in all the coprecipitates and remained unchanged even after 210 days of aging. The surface area and chemical composition of the precipitates were affected by pH, R, and aging. Chemical dissolution of the samples showed that arsenate was present mainly in ferrihydrite, but at R = 0.01, it was partially incorporated into the structures of crystalline Fe oxides. The sorption of phosphate on to the coprecipitates was affected not only by the mineralogy and surface area of the samples but also by the amounts of arsenate present in the oxides. The samples formed at pH 4.0 and 7.0 and at R = 0.1 sorbed lower amounts of phosphate than the precipitates obtained at R = 0 or 0.01, despite the former having a larger surface area and showing only a presence of short-range ordered materials. This is mainly due to the fact that in the coprecipitates at R = 0.1 arsenate occupied many sorption sites, thus preventing phosphate sorption. Less than 20% of the arsenate present in the coprecipitates formed at R = 0.1 was removed by phosphate and more from the samples synthesized at pH 7.0 or 10.0 than at pH 4.0. Moreover, we found that more arsenate was desorbed by phosphate from a ferrihydrite on which arsenate was added than from an iron-arsenate coprecipitate, attributed to the partial occlusion of some arsenate anions into the framework of the coprecipitate. XPS analyses confirmed these findings.  相似文献   

9.
Under oxic aqueous conditions, two-line ferrihydrite gradually transforms to more thermodynamically stable and more crystalline phases, such as goethite and hematite. This temperature- and pH-dependent transformation can play an important role in the sequestration of metals and metalloids adsorbed onto ferrihydrite. A comprehensive assessment of the crystallization of two-line ferrihydrite with respect to temperature (25, 50, 75, and 100 °C) and pH (2, 7, and 10) as a function of reaction time (minutes to months) was conducted via batch experiments. Pure and transformed phases were characterized by X-ray diffraction (XRD), X-ray absorption near-edge spectroscopy (XANES), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The rate of transformation of two-line ferrihydrite to hematite increased with increasing temperature at all pHs studied and followed first-order reaction kinetics. XRD and XANES showed simultaneous formation of goethite and hematite at 50 and 75 °C at pH 10, with hematite being the dominant product at all pHs and temperatures. With extended reaction time, hematite increased while goethite decreased, and goethite reaches a minimum after 7 days. Observations suggest two-line ferrihydrite transforms to hematite via a two-stage crystallization process, with goethite being intermediary. The findings of this study can be used to estimate rates of crystallization of pure two-line ferrihydrite over the broad range of temperatures and pH found in nature.  相似文献   

10.
The time dependent changes of Lu speciation (used as Am(III) homologue), initially sorbed onto 2-line ferrihydrite at pH 5.9, during tempering (70 degrees C) to stable crystalline transformation products, goethite and hematite, is studied. Microscopies (AFM, SEM), XRD and FTIR spectroscopy confirm transformation to both goethite and hematite, with a predominance of hematite. XRD investigation of another transformation series at pH 8.0 (75 degrees C, [Lu(III)initial] 7 times higher) shows that the cell volume of hematite increases, suggesting the incorporation of Lu in the crystal structure. Extended X-ray absorption fine structure (EXAFS) (pH 5.9 series, 70 degrees C) reveals a shortening of the Lu-O bond distance and an increase in asymmetry of the first shell with increasing tempering time in the intermediate temper time samples. The intensity of the second peak in the Fourier transform (FT) of the EXAFS increases and splits into two components. The EXAFS data of the end product can be modeled well using a hematite-like cluster, with an isotropic expansion of distances to account for incorporation of Lu into the hematite structure. These results demonstrate that the Lu is incorporated in the crystal lattice of the transformation product, as opposed to being occluded or remaining a sorbed species on the surface.  相似文献   

11.
The maintenance of monochloramine residuals in drinking water distribution systems is one technique often used to minimize microbial outbreaks and thereby maintain the safety of the water. Reactions between oxidizable species and monochloramine can however lead to undesirable losses in the disinfectant residual. Previous work has illustrated that the Fe(II) present within distribution systems is one type of oxidizable species that can exert a monochloramine demand. This paper extends this prior work by examining the kinetics of the reactions between Fe(II) and monochloramine in the presence of a variety of iron oxide surfaces. The identity of the iron oxide plays a significant role in the rate of these reactions. Surface area-normalized initial rate coefficients (k(init)) obtained in the presence of each oxide at pH approximately 6.9 exhibit the following trend in catalytic activity: magnetite > goethite > hematite approximately = lepidocrocite > ferrihydrite. The differences in the activity of these oxides are hypothesized to result from variations in the amount of Fe(II) sorbed to each of the oxides and to dissimilarities in the surface site densities of the oxides. The implications of carbonate on Fe(II) sorption to iron oxides are also examined. Comparing Fe(II) sorption isotherms for goethite obtained under differential carbonate concentrations, it is apparent that as the carbonate concentration (C(T,CO3)) increased from 0 to 11.7 mM that the Fe(II) sorption edge (50% sorption) shifts from a pH of approximately 5.8 to a pH of 7.8. This shift is hypothesized to be the result of the formation of aqueous and surface carbonate-Fe(II) complexes and to competition between carbonate and Fe(II) for surface sites. The implications of these changes are then discussed in light of the variable oxide studies.  相似文献   

12.
Perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (99TcO4-), was partitioned during precipitation and aging of iron and aluminum oxyhydroxide solids from aqueous simulants of high-level nuclear waste stored at Hanford, WA. Neutralization of acidic metal nitrate solutions (Al/Fe mole ratio 0.25 and 13.5; 40 ppm Re) to a final pH > 13, followed by aging at 90 degrees C for up to 18 weeks, resulted in substantial amounts of reversibly sorbed Re (approximately 1-10 ppm). Irreversibly sorbed Re increased in the Fe-dominated system with aging, reaching a final value of approximately 83 ppb after 168 h, in a mixture of hematite with minor goethite. Irreversibly sorbed Re in the Al-dominated system generally decreased with time to approximately 30 ppb after 18 weeks in solids dominated by boehmite. Increasing the total amount of Re to 1000 ppm increased the extent of irreversible sorption. The presence of 100 ppm Si prevented transformation of and irreversible Re uptake by ferrihydrite in Fe-dominated systems. In Al-dominated systems, 200 ppm Ni prevented hematite formation but did not affect perrhenate uptake. Results suggest that 5% of the 99Tc inventory in the Hanford waste tanks may be associated with the sludges, and approximately 0.5% incorporated into the solids under oxidizing conditions.  相似文献   

13.
Np(V) surface speciation on hematite surfaces at pH 7-9 under pC2 = 10(-3.45) atm was investigated using X-ray absorption spectroscopy (XAS). In situ XAS analyses suggest that bis-carbonato inner-sphere and tris-carbonato outer-sphere ternary surface species coexist at the hematite-water interface at pH 7-8.8, and the fraction of outer-sphere species gradually increases from 27 to 54% with increasing pH from 7 to 8.8. The results suggest that the heretofore unknown Np(V)-carbonato ternary surface species may be important in predicting the fate and transport of Np(V) in the subsurface environment down gradient of high-level nuclear waste respositories.  相似文献   

14.
Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occurs near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.  相似文献   

15.
2-Line ferrihydrite, a form of iron in uranium mine tailings, is a dominant adsorbent for elements of concern (EOC), such as arsenic. As ferrihydrite is unstable under oxic conditions and can undergo dissolution and subsequent transformation to hematite and goethite over time, the impact of transformation on the long-term stability of EOC within tailings is of importance from an environmental standpoint. Here, studies were undertaken to assess the rate of 2-line ferrihydrite transformation at varying As/Fe ratios (0.500-0.010) to simulate tailings conditions at the Deilmann Tailings Management Facility of Cameco Corporation, Canada. Kinetics were evaluated under relevant physical (~1 °C) and chemical conditions (pH ~10). As the As/Fe ratio increased from 0.010 to 0.018, the rate of ferrihydrite transformation decreased by 2 orders of magnitude. No transformation of ferrihydrite was observed at higher As/Fe ratios (0.050, 0.100, and 0.500). Arsenic was found to retard ferrihydrite dissolution and transformation as well as goethite formation.  相似文献   

16.
Zinc is one of the most widespread trace metals (TMs) in Earth surface environments and is the most concentrated TM in the downstream section of the Seine River (France) due to significant anthropogenic input from the Paris conurbation. In order to better identify the sources and cycling processes of Zn in this River basin, we investigated seasonal and spatial variations of Zn speciation in suspended particulate matter (SPM) in the oxic water column of the Seine River from upstream to downstream of Paris using synchrotron-based extend X-ray absorption fine structure (EXAFS) spectroscopy at the Zn K-edge. First-neighbor contributions to the EXAFS were analyzed in SPM samples, dried and stored under a dry nitrogen atmosphere or under an ambient oxygenated atmosphere. We found a sulfur first coordination environment around Zn (in the form of amorphous zinc sulfide) in the raw SPM samples stored under dry nitrogen vs an oxygen first coordination environment around Zn in the samples stored in an oxygenated atmosphere. These findings are supported by scanning electron microscopy and energy dispersive X-ray spectrometry observations. Linear combination fitting of the EXAFS data for SPM samples, using a large set of EXAFS spectra of Zn model compounds, indicates dramatic changes in the Zn speciation from upstream to downstream of Paris, with amorphous ZnS particles becoming dominant dowstream. In contrast, Zn species associated with calcite (either adsorbed or incorporated in the structure) are dominant upstream. Other Zn species representing about half of the Zn pool in the SPM consist of Zn-sorbed on iron oxyhydroxides (ferrihydrite and goethite) and, to a lesser extent, Zn-Al layered double hydroxides, Zn incorporated in dioctahedral layers of clay minerals and Zn sorbed to amorphous silica. Our results highlight the importance of preserving the oxidation state in TM speciation studies when sampling suspended matter, even in an oxic water column.  相似文献   

17.
Methyl arsenic adsorption and desorption behavior on iron oxides   总被引:4,自引:0,他引:4  
In virtually all Earth surface environments, methylated forms of arsenic can be found. Because of the widespread distribution and toxicity of methyl-arsenic compounds, their adsorption by soil minerals is of considerable interest. The objective of this study was to compare the adsorption and desorption behavior of methylarsonic acid (MMAsV), methylarsonous acid (MMAsIII), dimethylarsinic acid (DMAsV), dimethylarsinous acid (DMAsIII), arsenate (iAsV), and arsenite (iAsIII) on iron oxide minerals (goethite and 2-line ferrihydrite) by means of adsorption isotherms, adsorption envelopes, and desorption envelopes (using sulfate and phosphate as desorbing ligands). MMAsIII and DMAsIII were not appreciably retained by goethite or ferrihydrite within the pH range of 3 to 11, while iAsIII was strongly adsorbed to both iron oxides. MMAsV and iAsV were adsorbed in higher amounts than DMAsV on goethite and ferrihydrite at all pH values studied. MMAsV and iAsV exhibited high adsorption affinities on both goethite and ferrihydrite from pH 3 to 10, while DMAsV was adsorbed only at pH values below 8 by ferrihydrite and below 7 by goethite. All arsenic compounds were desorbed more efficiently by phosphate than sulfate. MMAsV, iAsV, and DMAsV each exhibited adsorption characteristics suggesting specific adsorption on both goethite and ferrihydrite. Increased methyl substitution resulted in both decreased adsorbed arsenic at low arsenic concentrations in solution and increased ease of arsenic release from the iron oxide surface.  相似文献   

18.
Photoinduced oxidation of arsenite to arsenate in the presence of goethite   总被引:2,自引:0,他引:2  
The photochemistry of an aqueous suspension of goethite in the presence of arsenite (As(III)) was investigated with X-ray absorption near edge structure (XANES) spectroscopy and solution-phase analysis. Irradiation of the arsenite/goethite under conditions where dissolved oxygen was present in solution led to the presence of arsenate (As(V)) product adsorbed on goethite and in solution. Under anoxic conditions (absence of dissolved oxygen), As(III) oxidation occurred, but the As(V) product was largely restricted to the goethite surface. In this circumstance, however, there was a significant amount of ferrous iron release, in stark contrast to the As(III) oxidation reaction in the presence of dissolved oxygen. Results suggested that in the oxic environment ferrous iron, which formed via the photoinduced oxidation of As(III) in the presence of goethite, was heterogeneously oxidized to ferric iron by dissolved oxygen. It is likely that aqueous reactive oxygen species formed during this process led to the further oxidation of As(III) in solution. Results from the current study for As(III)/goethite also were compared to results from a prior study of the photochemistry of As(III) in the presence of another iron oxyhydroxide, ferrihydrite. The comparison showed that at pH 5 and 2 h of light exposure the instantaneous rate of aqueous-phase As(V) formation in the presence of goethite (12.4 × 10(-5) M s(-1) m(-2)) was significantly faster than in the presence of ferrihydrite (6.73 × 10(-6) M s(-1) m(-2)). It was proposed that this increased rate of ferrous iron oxidation in the presence of goethite and dissolved oxygen was the primary reason for the higher As(III) oxidation rate when compared to the As(III)/ferrihydrite system. The surface area-normalized pseudo-first-order rate constant, for example, associated with the heterogeneous oxidation of Fe(II) by dissolved oxygen in the presence of goethite (1.9 × 10(-6) L s(-1) m(-2)) was experimentally determined to be considerably higher than if ferrihydrite was present (2.0 × 10(-7) L s(-1) m(-2)) at a solution pH of 5.  相似文献   

19.
The molecular-scale immobilization mechanisms of uranium uptake in the presence of phosphate and goethite were examined by extended X-ray absorption fine structure (EXAFS) spectroscopy. Wet chemistry data from U(VI)-equilibrated goethite suspensions at pH 4-7 in the presence of ~100 μM total phosphate indicated changes in U(VI) uptake mechanisms from adsorption to precipitation with increasing total uranium concentrations and with increasing pH. EXAFS analysis revealed that the precipitated U(VI) had a structure consistent with the meta-autunite group of solids. The adsorbed U(VI), in the absence of phosphate at pH 4-7, formed bidentate edge-sharing, ≡ Fe(OH)(2)UO(2), and bidentate corner-sharing, (≡ FeOH)(2)UO(2), surface complexes with respective U-Fe coordination distances of ~3.45 and ~4.3 ?. In the presence of phosphate and goethite, the relative amounts of precipitated and adsorbed U(VI) were quantified using linear combinations of the EXAFS spectra of precipitated U(VI) and phosphate-free adsorbed U(VI). A U(VI)-phosphate-Fe(III) oxide ternary surface complex is suggested as the dominant species at pH 4 and total U(VI) of 10 μM or less on the basis of the linear combination fitting, a P shell indicated by EXAFS, and the simultaneous enhancement of U(VI) and phosphate uptake on goethite. A structural model for the ternary surface complex was proposed that included a single phosphate shell at ~3.6 ? (U-P) and a single iron shell at ~4.3 ? (U-Fe). While the data can be explained by a U-bridging ternary surface complex, (≡ FeO)(2)UO(2)PO(4), it is not possible to statistically distinguish this scenario from one with P-bridging complexes also present.  相似文献   

20.
A compartmented soil-glass bead culture system was used to investigate characteristics of iron plaque and arsenic accumulation and speciation in mature rice plants with different capacities of forming iron plaque on their roots. X-ray absorption near-edge structure spectra and extended X-ray absorption fine structure were utilized to identify the mineralogical characteristics of iron plaque and arsenic sequestration in plaque on the rice roots. Iron plaque was dominated by (oxyhydr)oxides, which were composed of ferrihydrite (81-100%), with a minor amount of goethite (19%) fitted in one of the samples. Sequential extraction and XANES data showed that arsenic in iron plaque was sequestered mainly with amorphous and crystalline iron (oxyhydr)oxides, and that arsenate was the predominant species. There was significant variation in iron plaque formation between genotypes, and the distribution of arsenic in different components of mature rice plants followed the following order: iron plaque > root > straw > husk > grain for all genotypes. Arsenic accumulation in grain differed significantly among genotypes. Inorganic arsenic and dimethylarsinic acid (DMA) were the main arsenic species in rice grain for six genotypes, and there were large genotypic differences in levels of DMA and inorganic arsenic in grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号