首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nanoporous silica colloids were prepared by a convenient single-step sol-gel process. In this approach, acidic aluminum nitrate (Al(NO3)3) solution was added to the ethanol solution of tetraethoxy orthosilicate (TEOS). In the preliminary stage, alumina/silica core-shell particles were formed. Then the Al2O3 cores were dissolved subsequently with the decrease of pH value, and the nanoporous silica was formed. The porous silica particles were characterized by transmission electron microscopy (TEM). The formation mechanism of the porous silica was discussed.  相似文献   

3.
4.
Self-assembly of nanohydroxyapatite in mesoporous silica   总被引:1,自引:0,他引:1  
A novel material hexagonal mesoporous silica-hydroxyapatite (HMS-HA) has been developed based on self-assembly of nanohydroxyapatite in mesoporous silica in situ. The structural and textural properties of the materials are, respectively, characterized via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N(2) adsorption, thermogravimetic analysis, and high-resolution transmission electron spectroscopy (HRTEM). Variable crystallinity of HA involved in the mesopores yields from different sintering temperature, and correspondingly determines different degradation manners. This biocompatible new material hybridized nanoporosity to well acknowledge biofunctional scaffold (HA). It promises a high potential for application in drug and gene delivery.  相似文献   

5.
赵宗彦  柳清菊  张瑾  朱忠其 《功能材料》2006,37(12):1859-1863
作为微电子机械系统(MEMS)技术中最有潜力的绝热材料,纳米多孔二氧化硅薄膜近年来引起了广泛的关注.研究表明其绝热性能与微观结构密切相关.综述了纳米多孔二氧化硅薄膜的制备方法、表征手段和绝热机理,并讨论了目前存在的一些问题和今后的发展方向.  相似文献   

6.
纳米多孔二氧化硅薄膜的制备与表征   总被引:2,自引:3,他引:2  
以正硅酸乙酯为原料,采用酸/碱两步溶胶 凝胶法、结合匀胶和超临界干燥等工艺在硅片上成功制备了纳米多孔二氧化硅薄膜。适合匀胶的二氧化硅溶胶的粘度范围为 9~15mPa·s;多孔二氧化硅薄膜表面均匀平整,其厚度为400~1000nm;折射率为1.09~1.24;介电常数为1.5~2.5。该多孔二氧化硅薄膜具有三维网络结构,二氧化硅微粒直径为10~20nm。  相似文献   

7.
碱催化多孔二氧化硅薄膜的制备和性能表征   总被引:8,自引:0,他引:8  
殷明志  姚熹  张良莹 《功能材料》2003,34(1):103-105
以水为介质,NH3·H2O为催化剂,丙三醇(C3H5(OH)3和聚乙烯醇(PVA)为添加剂,正硅酸乙脂(TEOS)溶胶 凝胶工艺可制备纳米多孔二氧化硅薄膜。体系的H2O/TEOS>15,TEOS的水解 聚合过程可通过添加剂效应,pH效应等控制。碱催化会使二氧化硅的溶解度增大,也能使二氧化硅胶粒带负电荷,抑制了二氧化硅胶粒之间的聚合长大,而丙三醇与TEOS的水解中间Si(OR)4-x(OH)x结合,抑制其与二氧化硅胶粒的聚合。聚乙烯醇(PVA)能使二氧化硅溶胶具有网状结构,使二氧化硅溶胶易于成膜。该工艺制备的多孔二氧化硅薄膜具有纳米多孔结构。其Vicker硬度在600~800N/mm2,热导率<0.2W·m-1K-1。  相似文献   

8.
纳米多孔二氧化硅薄膜的制备及性能   总被引:5,自引:0,他引:5  
以N(C_8H_(15))_4~+OH~-为催化剂,用正硅酸乙脂(TEOS)溶胶-凝胶工艺制备出纳米多孔二氧化硅薄膜。体系的H_2O/TEOS>25,强碱催化使二氧化硅的溶解度增大并使二氧化硅胶粒带负电荷,抑制了二氧化硅的聚合。丙三醇与TEOS的水解中间体Si(OC_2H_5)_4-x(OH)_x及二氧化硅胶粒Si_xO_y(OH)_z~(+n)表面Si-OH形成氢键,抑制了二氧化硅的聚沉。聚乙烯醇(PVA)使粒状二氧化硅溶胶具有网状结构,易于成膜。薄膜由致密结构转化为均匀纳米多孔结构是构成薄膜的二氧化硅胶粒在热处理时聚集和塑性形变的结果。多孔二氧化硅薄膜的折射率为1.27~1.42,介电常数为1.578~2.016,热导率为0.2W/(m·K)。  相似文献   

9.
以正硅酸乙酯、异丙醇、去离子水为原料,盐酸、氨水为催化剂,采用溶胶-凝胶、旋转涂胶、老化及超临界流体干燥工艺制备纳米多孔氧化硅薄膜.研究了溶胶-凝胶工艺的影响因素,考察了溶胶粘度和匀胶转速对成膜性能的影响,采用扫描电镜表征了薄膜的表面形貌和截面结构,用椭偏仪表征了薄膜的孔隙率、介电常数以及厚度等性能参数,分析了薄膜的结构和红外特性.  相似文献   

10.
11.
Cage-like hollow silica microspheres composed of mesoporous silica nanoparticles and macroporous interparticle voids were fabricated via the latex-surfactant dual templates route, simply by controlling the surfactant additions below its critical micelle concentration. The surface area, pore volume increase, and both the mesopore and macropore sizes decrease with the increase in surfactant amount. The surfactant cations preferentially assemble with negatively charged silica species generated by the hydrolysis and condensation of tetraethyl orthosilicate to form composite silica-surfactant nanoparticles. The electrostatic repulsion between the silica-surfactant composite nanoparticles and negatively charged polystyrene (PS) beads is smaller than that between surfactant-free silica and PS, favoring the deposition of composite nanoparticles on the surface of PS template. In the meantime, the deposited nanoparticles also have reduced repulsion from their neighbors, favoring their bridging to form silica shells. The more the surfactant is used, the less the repulsion exists among the composite particles and the smaller the interparticle macroporous voids are.  相似文献   

12.
A water soluble porogen, e.g., poly(amido amine) dendrimer, has been used as a structure-directing agent to introduce porosity of nanometer scale in silica-based nanocomposite materials. Hydrothermal synthesis was carried out at different elevated temperatures (343-413 K) in a closed teflon-lined stainless steel autoclave under autogenerated pressure. The synthesis time varied from 2 to 6 days, depending upon pH, synthesis temperature, concentration of porogen, etc. X-ray diffraction, transmission and scanning electron microscopic analyses, as well as infrared absorption spectroscopic measurements, were carried out to characterize these materials. Mostly disordered mesostructures were observed. The porous silica particles with sphere-like morphology varied from 30 to 200 nm in size were prepared depending upon the conditions of preparation. The structure and nanoporosity were preserved after the removal of structure-directing porogen through calcination at 823 K. The pore size was in the range of the dendrimer molecule as a template, indicating the structure-directing role of the terminal amino groups in the dendrimer molecule for the synthesis of nanoporous silica, since the nanoporous silica could be prepared by the hydrogen bonding or electrostatic interaction of dendrimer amino groups and tetraethyl orthosilicate.  相似文献   

13.
It is a great challenge to spontaneously assemble achiral molecules into twisted nanostructures in the absence of chiral substances. Here we show that two achiral centrosymmetric quinacridone (QA) derivatives, N,N′-di(n-hexyl)-1, 3, 8, 10-tetramethylquinacridone (C6TMQA) and N,N′-di(n-decyl)-1, 3, 8, 10-tetramethylquinac ridone (C10TMQA), can be employed as building blocks to fabricate well-defined twisted nanostructures by controlling the solvent composition and concentration. Bowknot-like bundles with twisted fiber arms were prepared from C6TMQA, whilst uniform twisted fibers were generated from C10TMQA in ethanol/THF solution. Spectroscopic characterization and molecular simulation calculations revealed that the introduction of ethanol into the solution could induce a staggered aggregation of C6TMQA (or C10TMQA) molecules and the formation of twisted nanostructures. Such twisted materials generated from achiral organic functional molecules may be valuable in the design and fabrication of new materials for optoelectronic applications. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
Yb-doped fibers are widely used in laser applications requiring high average output powers and high-peak-power pulse amplification. Photodarkening (PD) is recognized as one limiting factor in these fibers when pumped with high-intensity radiation. We describe an approach for performing quantitative PD studies of fibers, and we present measurements of the rate of PD in Yb-doped single-mode fibers with varying inversion levels. The method is applicable to large-mode-area fibers. We observed a seventh-order dependence of the PD rate on the excited-state Yb concentration for two different fibers; this result implies that PD of a Yb-doped fiber source fabricated using a particular fiber will be strongly dependent on the configuration of the device.  相似文献   

15.
A wide range of elements and alloys have been drawn as filaments contained in fused silica by the Taylor or Microwire process. By proper choice of heat source low melting metals that can be strongly superheated as well as very refractory metals such as Ir, brittle alloys such as the superconductor V3Si and semiconductors such as Si can be continuously cast.  相似文献   

16.
Understanding how polyhedra pack into extended arrangements is integral to the design and discovery of crystalline materials at all length scales. Much progress has been made in enumerating and characterizing the packing of polyhedral shapes, and the self-assembly of polyhedral nanocrystals into ordered superstructures. However, directing the self-assembly of polyhedral nanocrystals into densest packings requires precise control of particle shape, polydispersity, interactions and driving forces. Here we show with experiment and computer simulation that a range of nanoscale Ag polyhedra can self-assemble into their conjectured densest packings. When passivated with adsorbing polymer, the polyhedra behave as quasi-hard particles and assemble into millimetre-sized three-dimensional supercrystals by sedimentation. We also show, by inducing depletion attraction through excess polymer in solution, that octahedra form an exotic superstructure with complex helical motifs rather than the densest Minkowski lattice. Such large-scale Ag supercrystals may facilitate the design of scalable three-dimensional plasmonic metamaterials for sensing, nanophotonics and photocatalysis.  相似文献   

17.
We have studied the effect of drawing conditions and process environment on the mechanical strength of microstructured optical fibers. The results indicate that, even at reduced drawing temperatures, high-strength fibers with few “weak” points can be produced provided that the walls of the holes in the preform are sufficiently clean. The effects of air humidity and different liquids in the holes on the strength of microstructured fibers are shown to be similar to those for standard fibers.  相似文献   

18.
Radio-frequency (RF) impedance spectroscopy has been used to measure the dielectric permittivity of a polymer coating on optical fibers. It is established that the temperature dependences of permittivity in the RF range in polymers and fused silica significantly differ. The principal possibility of independent measurements of the temperature of a polymer cladding and silica core of an optical fiber is confirmed.  相似文献   

19.
Myoglobin and hemoglobin were encapsulated in wet, nanoporous silica gels. A rigorous evaluation of the effect of the encapsulation on protein dynamics and function was carried out by measuring the kinetics of carbon monoxide rebinding after nanosecond laser flash-photolysis with transient absorption detection, and the oxygen affinity with absorption microspectrophotometry. The time course of carbon monoxide binding to myoglobin evidenced a strongly enhanced geminate recombination and a faster bimolecular rebinding with respect to solution, whereas T and R quaternary states of hemoglobin exhibited a geminate phase and a bimolecular binding rate very similar to those observed in solution. Oxygen affinity of T-state hemoglobin was found to be close to that observed for the binding of the first oxygen to T-state hemoglobin in solution. Results indicate that some conformational transitions are kinetically restricted, allowing to isolate distinct tertiary and quaternary states. This opens the way to their detailed functional characterization and application to biodevices.  相似文献   

20.
以正硅酸乙酯(TEOS)为先驱体,采用溶胶-凝胶法,结合旋转涂胶和超临界干燥等工艺,在硅片上制备了纳米多孔SiO2薄膜。XRD和AFM表明该SiO2薄膜为无定形态,具有多孔网络结构,表面均匀平整,其SiO2基本粒子和孔隙的直径为30~40nm。利用椭偏光谱仪测量了SiO2薄膜在波长245~1650nm的椭偏光谱,采用Si/cauchy/rough结构模型对该光谱进行了拟合,获得了SiO2薄膜的厚度和光学常数。SiO2薄膜的厚度为500~1100nm;折射率为1.13~1.21;孔隙率为56%~70%;介电常数为1.9~2.3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号