首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
时序数据存在时序性,并且其短序列的特征存在重要程度差异性。针对时序数据特征,提出一种基于注意力机制的卷积神经网络(CNN)联合长短期记忆网络(LSTM)的神经网络预测模型,融合粗细粒度特征实现准确的时间序列预测。该模型由两部分构成:基于注意力机制的CNN,在标准CNN网络上增加注意力分支,以抽取重要细粒度特征;后端为LSTM,由细粒度特征抽取潜藏时序规律的粗粒度特征。在真实的热电联产供热数据上的实验表明,该模型比差分整合移动平均自回归、支持向量回归、CNN以及LSTM模型的预测效果更好,对比目前企业将预定量作为预测量的方法,预测缩放误差平均值(MASE)与均方根误差(RMSE)指标分别提升了89.64%和61.73%。  相似文献   

2.
股价预测一直是投资者在股票市场中关注的焦点.近年来,深度学习技术在这一领域得到广泛应用.在融合卷积神经网络(CNN)和长短时记忆网络(LSTM),构建CNN-LSTM模型的基础上,引入多向延迟嵌入的张量处理技术MDT(mutiway-delay-embedding),对每日股票因子向量进行因子重构,生成汉克尔矩阵,按时...  相似文献   

3.
广播式自动相关监视(ADS-B)是民航新一代空中交通管理系统的重要组成部分,由于协议没有数据加密和认证,导致容易受到数据攻击.为了准确检测ADS-B数据攻击,基于ADS-B数据的时序性,提出了一种基于注意力机制的卷积神经网络-长短期记忆网络(convolutional neural networks-long short-term memory, CNN-LSTM)异常数据检测模型.首先,利用CNN提取ADS-B数据的特征,然后以时序形式将特征向量输入到LSTM中,最后使用注意力机制进行网络参数优化,实现对ADS-B数据的预测,通过计算预测误差,来进行异常检测.实验表明,该模型能够很好地检测出模拟的4种类型的异常数据,与其他机器学习方法相比,具有更高的准确率和F1分数.  相似文献   

4.
针对传统长短时记忆网络(Long Short-Term Memory,LSTM)和卷积神经网络(Convolution Neural Network,CNN)在提取特征时无法体现每个词语在文本中重要程度的问题,提出一种基于LSTM-Attention与CNN混合模型的文本分类方法.使用CNN提取文本局部信息,进而整合出...  相似文献   

5.
蛋白质亚细胞位置预测研究是目前蛋白质组学和生物信息学研究的重点问题之一。蛋白质的亚细胞定位决定了它的生物学功能,故研究亚细胞定位对了解蛋白质功能非常重要。由于蛋白质结构的序列性,考虑使用序列模型来进行亚细胞定位研究。尝试使用卷积神经网络(convolutional neural network,CNN)、长短期记忆神经网络(long short-term memory,LSTM)两种模型挖掘氨基酸序列所包含的信息,从而进行亚细胞定位的预测。随后构建了基于卷积的长短期记忆网络(Convolutional-LSTM)的集成模型进行亚细胞定位。首先通过卷积神经网络对蛋白质数据进行特征抽取,随后进行特征组合,并将其送入长短期记忆神经网络进行特征表征学习,得到亚细胞定位结果。使用该模型能达到0.816 5的分类准确率,比传统方法有明显提升。  相似文献   

6.
道路交通事故是道路交通安全水平的具体体现,为使预测数据更科学地为交通管理系统提供决策。提出建立基于LSTM(Long Short-Term Memory)神经网络的交通事故模型,训练交通事故相关的数据,对交通安全水平的指标进行预测。经过与传统回归模型和传统神经网络模型进行实验对比,实验显示LSTM拟合效果最佳,另外LSTM模型对同一趋势上的预测效果有明显优势。通过使用LSTM模型捕获数据中存在的时序依赖关系,能够更准确地对交通事故安全水平进行预测,使交通管理部门制定更加科学准确的决策。  相似文献   

7.
随着互联网的发展,内容营销逐渐成为电商营销的主流,而该类营销的日商品交易总额(gross merchandise volume,GMV)直接关系到企业的库存优化控制与广告投放策略。为了提高预测精度,基于真实电商订单数据集,根据内容营销的指标,分析用户行为对于GMV的影响,提出了一种长短期记忆网络(long short-term memory network,LSTM)与正则化极限学习机(regularized extreme learning machine,RELM)的组合模型LSTM-RELM。实验结果表明,相比于传统单一模型与双LSTM、LSTM-SVR、GM(1,1)-BP等组合模型,LSTM-RELM模型具有更精确的预测效果与更快的运行速度,能为相关销售企业提供广告投放策略参考与库存优化建议。  相似文献   

8.
结合注意力机制的编解码框架模型已经被广泛地应用在图像描述任务中。大多数方法都强制对生成的每个单词进行主动的视觉注意,然而,解码器很可能不需要关注图像中的任何视觉信息就生成非视觉单词,比如“the”和“of”。本文提出一种自适应注意力模型,编码端采用Faster R-CNN网络提取图像中的显著特征,解码端LSTM网络中引入一个视觉监督信号。在每个时间步长,它可以自动地决定何时依赖于视觉信号,何时仅依赖于语言模型。最后在Flickr30K和MS-COCO数据集进行验证,实验结果表明该模型有效地提升了描述语句的质量。  相似文献   

9.
新能源发展的规模越来越大,电力系统的需求也越来越大,准确的电力负荷预测有助于电力调度、能源规划。对此,提出基于LSTM的短期电力负荷预测多种方法。其中包括LSTM模型、CNN_LSTM模型、Attention_LSTM模型、CNN_Attention_LSTM模型。选择的数据集来自于马来西亚柔佛州供电公司提供的小时用电负荷数据。为了提高准确率,还加入了时间特征、温度、湿度等多维度去考虑对负荷预测的影响。实验结果显示,平均绝对百分比误差、平均百分比误差等评价指标均优于传统方法。  相似文献   

10.
针对股票价格非平稳、非线性、高复杂和随机波动等特性使其预测难度大的问题,提出一种基于E-V-ALSTM混合深度模型的股票价格预测方法。使用经验模态分解(EMD)对股票价格数据进行第一次分解,得到若干固有模态函数(IMFs)和一个残差(Res),降低了股票价格数据的非平稳性和非线性;使用样本熵(SampEn)对这些IMFs进行复杂性评估;将复杂度高于一定阈值的IMFs使用变分模态分解(VMD)进行二次分解,以降低股票价格数据的复杂性;通过加入注意力机制的长短期记忆神经网络(LSTM)模型进行预测,捕捉关键时间点特征信息,重新赋予权重,以解决股票价格数据的随机波动性,提升预测方法的精确度。对沪深300指数和德国DAX指数等数据集上的实验结果表明,该模型比其他对比模型能进一步提高股票价格预测的准确性。  相似文献   

11.
针对股票数据共线性和非线性的特点,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元(Gated Recurrent Unit,GRU)神经网络的混合预测模型,并对沪深300指数、上证综指和深证成指进行了预测.该模型首先采用CNN提取特征向量,对原始数据进行降维...  相似文献   

12.
基于卷积-LSTM网络的广告点击率预测模型研究   总被引:1,自引:0,他引:1       下载免费PDF全文
点击率预测是计算广告学的核心算法之一。传统浅层模型没有充分考虑到数据之间存在的非线性关系,且使用人工特征提取方法费时费力。针对这些问题,提出了基于卷积(Convolutional Neural Networks)-LSTM(Long Short Term Memory)混合神经网络的广告点击率预测模型。该模型使用卷积神经网络提取高影响力特征,并通过LSTM神经网络的时序性进行预测分类。实验结果证明:与浅层模型或单一结构的神经网络模型相比,基于卷积-LSTM的混合神经网络模型能有效提高广告点击事件的预测准确率。  相似文献   

13.
基于CNN和LSTM的多通道注意力机制文本分类模型   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统的卷积神经网络(Convolutional Neural Network,CNN)和长短时记忆网络(Long Short-Term Memory,LSTM)在提取特征时无法体现每个词语在文本中重要程度的问题,提出一种基于CNN和LSTM的多通道注意力机制文本分类模型。使用CNN和LSTM提取文本局部信息和上下文特征;用多通道注意力机制(Attention)提取CNN和LSTM输出信息的注意力分值;将多通道注意力机制的输出信息进行融合,实现了有效提取文本特征的基础上将注意力集中在重要的词语上。在三个公开数据集上的实验结果表明,提出的模型相较于CNN、LSTM及其改进模型效果更好,可以有效提高文本分类的效果。  相似文献   

14.
冯磊  蒋磊  许华  苟泽中 《计算机工程》2021,47(4):108-114
为解决传统基于深度学习的调制识别算法在小样本条件下识别准确率较低的问题,提出一种基于深度级联孪生网络的通信信号小样本调制识别算法。根据通信信号时序图的时空特性,设计由卷积神经网络和长短时记忆网络级联的特征提取模块将原始信号特征映射至特征空间,同时在孪生网络架构下对提取的特征进行距离度量并以相似性约束训练网络,避免特征提取模块在训练过程中出现过拟合现象,最终通过最近邻分类器识别待测样本的调制类别。在DeepSig公开调制数据集上的实验结果表明,与传统基于深度学习的调制识别算法相比,该算法能有效降低训练过程中所需的样本量,且在小样本条件下的识别准确率更高。  相似文献   

15.
张政  何山  贺靖淇 《计算机应用》2019,39(9):2726-2730
视频可以看作是连续的视频帧图像组成的序列,视频彩色化的实质是对图像进行彩色化处理,但由于视频的长期序列性,若直接将现有的图像着色方法应用到视频彩色化上极易产生抖动或闪烁现象。针对这个问题,提出一种结合长短时记忆(LSTM)和卷积神经网络(CNN)的混合神经网络模型用于视频的着色。该方法用CNN提取视频帧的语义特征,同时使用LSTM单元学习灰度视频的时序信息,保证视频的时空一致性,然后融合局部语义特征和时序特征,生成最终的彩色视频帧序列。通过对实验结果的定量分析和用户研究表明,该方法在视频彩色化上实现了较好的效果。  相似文献   

16.
自动生成图片描述是自然语言处理和计算机视觉的热点研究话题,要求计算机理解图像语义信息并用人类自然语言的形式进行文字表述.针对当前生成中文图像描述整体质量不高的问题,提出首先利用FastText生成词向量,利用卷积神经网络提取图像全局特征;然后将成对的语句和图像〈S, I〉进行编码,并融合为两者的多模态特征矩阵;最后模型采用多层的长短时记忆网络对多模态特征矩阵进行解码,并通过计算余弦相似度得到解码的结果.通过对比发现所提模型在双语评估研究(BLEU)指标上优于其他模型,生成的中文描述可以准确概括图像的语义信息.  相似文献   

17.
准确的交通流量预测在帮助交通管理部门采取有效的交通控制和诱导手段以及帮助出行者合理规划路线等方面具有重要意义。针对传统深度学习模型对交通数据时空特性考虑不足的问题,在卷积神经网络(CNN)和长短时记忆(LSTM)单元的理论框架下,结合城市交通流量的时空特性,建立了一种基于注意力机制的CNN-LSTM预测模型——STCAL。首先,采用细粒度的网格划分方法来构建交通流量的时空矩阵;其次,利用CNN模型作为空间组件来提取城市交通流量不同时期下的空间特性;最后,利用基于注意力机制的LSTM模型作为动态时间组件来捕获交通流量的时序特征和趋势变动性,并实现交通流量的预测。实验结果表明,STCAL模型与循环门单元(GRU)和时空残差网络(ST-ResNet)相比,均方根误差(RMSE)指标分别减小了17.15%和7.37%,均绝对误差(MAE)指标分别减小了22.75%和9.14%,决定系数(R2)指标分别提升了11.27%和2.37%。同时,发现该模型在规律性较高的工作日的预测效果好于周末,且对工作日早高峰的预测效果最好,可见该模型可为短时城市区域交通流量变化监测提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号