首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 546 毫秒
1.
对抗样本生成技术是近年来深度学习应用于安全领域的一个热点,主要是研究对抗样本生成的机理、方法和实现方法,其目的是为了更好地理解和应对深度学习系统的脆弱性和安全性问题。重点关注深度神经网络分类器的对抗样本生成技术,介绍了对抗样本的概念,按“攻击条件”和“攻击目标”,将分类器的攻击分为四大类,分别是白盒条件下的定向攻击、白盒条件下的非定向攻击、黑盒条件下的定向攻击和黑盒条件下的非定向攻击。在此基础上,深入分析了每种攻击下典型的对抗样本生成技术,包括基本思想、方法和实现算法,并从适用场景、优点和缺点三个角度对它们进行了比较。通过对研究现状的分析,表明了对抗样本生成技术的多样性、规律性,以及不同生成技术的共性和差异性,为进一步研究和发展对抗样本生成技术,提高深度学习系统的安全性,提供有益的参考。  相似文献   

2.
如今,深度学习已被广泛应用于图像分类和图像识别的问题中,取得了令人满意的实际效果,成为许多人工智能应用的关键所在.在对于模型准确率的不断探究中,研究人员在近期提出了“对抗样本”这一概念.通过在原有样本中添加微小扰动的方法,成功地大幅度降低原有分类深度模型的准确率,实现了对于深度学习的对抗目的,同时也给深度学习的攻方提供了新的思路,对如何开展防御提出了新的要求.在介绍对抗样本生成技术的起源和原理的基础上,对近年来有关对抗样本的研究和文献进行了总结,按照各自的算法原理将经典的生成算法分成两大类——全像素添加扰动和部分像素添加扰动.之后,以目标定向和目标非定向、黑盒测试和白盒测试、肉眼可见和肉眼不可见的二级分类标准进行二次分类.同时,使用MNIST数据集对各类代表性的方法进行了实验验证,以探究各种方法的优缺点.最后总结了生成对抗样本所面临的挑战及其可以发展的方向,并就该技术的发展前景进行了探讨.  相似文献   

3.
目标检测是一种广泛应用于工业控制和航空航天等安全攸关场景的重要技术。随着深度学习在目标检测领域的应用,检测精度得到较大提升,但由于深度学习固有的脆弱性,使得基于深度学习的目标检测技术的可靠性和安全性面临新的挑战。本文对面向目标检测的对抗样本生成及防御的研究分析和总结,致力于为增强目标检测模型的鲁棒性和提出更好的防御策略提供思路。首先,介绍对抗样本的概念、产生原因以及目标检测领域对抗样本生成常用的评价指标和数据集。然后,根据对抗样本生成的扰动范围将攻击分为全局扰动攻击和局部扰动攻击,并在此分类基础上,分别从攻击的目标检测器类型、损失函数设计等方面对目标检测的对抗样本生成方法进行分析和总结,通过实验对比了几种典型目标检测对抗攻击方法的性能,同时比较了这几种方法的跨模型迁移攻击能力。此外,本文对目前目标检测领域常用的对抗防御策略进行了分析和归纳。最后,总结了目标检测领域对抗样本的生成及防御面临的挑战,并对未来发展方向做出展望。  相似文献   

4.
深度学习方法已被广泛应用于恶意软件检测中并取得了较好的预测精度,但同时深度神经网络容易受到对输入数据添加细微扰动的对抗攻击,导致模型输出错误的预测结果,从而使得恶意软件检测失效。针对基于深度学习的恶意软件检测方法的安全性,提出了一种面向恶意软件检测模型的黑盒对抗攻击方法。首先在恶意软件检测模型内部结构参数完全未知的前提下,通过生成对抗网络模型来生成恶意软件样本;然后使生成的对抗样本被识别成预先设定的目标类型以实现目标攻击,从而躲避恶意软件检测;最后,在Kaggle竞赛的恶意软件数据集上展开实验,验证了所提黑盒攻击方法的有效性。进一步得到,生成的对抗样本也可对其他恶意软件检测方法攻击成功,这验证了其具有较强的攻击迁移性。  相似文献   

5.
深度学习模型在对抗攻击面前非常脆弱,即使对数据添加一个小的、感知上无法区分的扰动,也很容易降低其分类性能.针对现有黑盒对抗攻击方法存在效率低和成功率不高的问题,提出基于拓扑自适应粒子群优化的黑盒对抗攻击方法.首先根据原始图像随机生成初始对抗样本种群;然后根据邻域信息计算各样本的扰动并在搜索空间内迭代,计算动态惩罚项系数以控制样本的适应度值,当迭代多次种群适应度值未提高时,各样本进行邻域重分布,根据进化轨迹调整状态;最后修剪多余扰动获得最终的对抗样本.以InceptionV3等分类模型为攻击对象,使用MNIST,CIFAR-10和ImageNet数据集,在相同的样本数量和模型访问限制条件下,进行无目标对抗攻击和目标对抗攻击实验.结果表明,与现有方法相比,所提攻击方法具有较少的模型访问次数和较高的攻击成功率,对InceptionV3模型的平均访问次数为2 502,攻击成功率为94.30%.  相似文献   

6.
近年来, 随着人工智能的研究和发展, 深度学习被广泛应用。深度学习在自然语言处理、计算机视觉等多个领域表现出良好的效果。特别是计算机视觉方面, 在图像识别和图像分类中, 深度学习具备非常高的准确性。然而越来越多的研究表明, 深度神经网络存在着安全隐患, 其中就包括对抗样本攻击。对抗样本是一种人为加入特定扰动的数据样本, 这种特殊样本在传递给已训练好的模型时, 神经网络模型会输出与预期结果不同的结果。在安全性要求较高的场景下, 对抗样本显然会对采用深度神经网络的应用产生威胁。目前国内外对于对抗样本的研究主要集中在图片领域, 图像对抗样本就是在图片中加入特殊信息的图片数据, 使基于神经网络的图像分类模型做出错误的分类。已有的图像对抗样本方法主要采用全局扰动方法,即将这些扰动信息添加在整张图片上。相比于全局扰动, 局部扰动将生成的扰动信息添加到图片的非重点区域, 从而使得对抗样本隐蔽性更强, 更难被人眼发现。本文提出了一种生成局部扰动的图像对抗样本方法。该方法首先使用 Yolo 目标检测方法识别出图片中的重点位置区域, 然后以 MIFGSM 方法为基础, 结合 Curls 方法中提到的先梯度下降再梯度上升的思想,在非重点区域添加扰动信息, 从而生成局部扰动的对抗样本。实验结果表明, 在对抗扰动区域减小的情况下可以实现与全局扰动相同的攻击成功率。  相似文献   

7.
深度神经网络易受对抗样本攻击的影响并产生错误输出,传统的生成对抗样本的方法都是从优化角度生成对抗样本.文中提出基于生成对抗网络(GAN)的对抗样本生成方法,使用GAN进行白盒目标攻击,训练好的生成器对输入样本产生扰动,生成对抗样本.使用四种损失函数约束生成对抗样本的质量并提高攻击成功率.在MNIST、CIFAR-10、ImageNet数据集上的大量实验验证文中方法的有效性,文中方法的攻击成功率较高.  相似文献   

8.
基于生成式对抗网络的通用性对抗扰动生成方法   总被引:1,自引:0,他引:1  
深度神经网络在图像分类应用中具有很高的准确率,然而,当在原始图像中添加微小的对抗扰动后,深度神经网络的分类准确率会显著下降。研究表明,对于一个分类器和数据集存在一种通用性对抗扰动,其可对大部分原始图像产生攻击效果。文章设计了一种通过生成式对抗网络来制作通用性对抗扰动的方法。通过生成式对抗网络的训练,生成器可制作出通用性对抗扰动,将该扰动添加到原始图像中制作对抗样本,从而达到攻击的目的。文章在CIFAR-10数据集上进行了无目标攻击、目标攻击和迁移性攻击实验。实验表明,生成式对抗网络生成的通用性对抗扰动可在较低范数约束下达到89%的攻击成功率,且利用训练后的生成器可在短时间内制作出大量的对抗样本,利于深度神经网络的鲁棒性研究。  相似文献   

9.
王涛  马川  陈淑平 《计算机应用研究》2021,38(8):2543-2548,2555
通过研究对抗性图像扰动算法,应对深度神经网络对图像中个人信息的挖掘和发现以保护个人信息安全.将对抗样本生成问题转换为一个含有限制条件的多目标优化问题,考虑神经网络的分类置信度、扰动像素的位置以及色差等目标,利用差分进化算法迭代得到对抗样本.在MNIST和CIFAR-10数据集上,基于深度神经网络LeNet和ResNet进行了对抗样本生成实验,并从对抗成功率、扰动像素数目、优化效果和对抗样本的空间特征等方面进行了对比和分析.结果表明,算法在扰动像素极少的情况下(扰动均值为5)依然可以保证对深度神经网络的有效对抗,并显著优化了扰动像素的位置及色差,达到不破坏原图像的情况下保护个人信息的目的.该研究有助于促进信息技术红利共享与个人信息安全保障之间的平衡,也为对抗样本生成及深度神经网络中分类空间特征的研究提供了技术支撑.  相似文献   

10.
给图片添加特定扰动可以生成对抗样本, 误导深度神经网络输出错误结果, 更加强力的攻击方法可以促进网络模型安全性和鲁棒性的研究. 攻击方法分为白盒攻击和黑盒攻击, 对抗样本的迁移性可以借已知模型生成结果来攻击其他黑盒模型. 基于直线积分梯度的攻击TAIG-S可以生成具有较强迁移性的样本, 但是在直线路径中会受噪声影响, 叠加与预测结果无关的像素梯度, 影响了攻击成功率. 所提出的Guided-TAIG方法引入引导积分梯度, 在每一段积分路径计算上采用自适应调整的方式, 纠正绝对值较低的部分像素值, 并且在一定区间内寻找下一步的起点, 规避了无意义的梯度噪声累积. 基于ImageNet数据集上的实验表明, Guided-TAIG在CNN和Transformer架构模型上的白盒攻击性能均优于FGSM、C&W、TAIG-S等方法, 并且制作的扰动更小, 黑盒模式下迁移攻击性能更强, 表明了所提方法的有效性.  相似文献   

11.
深度学习目前被广泛应用于计算机视觉、机器人技术和自然语言处理等领域。然而,已有研究表明,深度神经网络在对抗样本面前很脆弱,一个精心制作的对抗样本就可以使深度学习模型判断出错。现有的研究大多通过产生微小的Lp范数扰动来误导分类器的对抗性攻击,但是取得的效果并不理想。本文提出一种新的对抗攻击方法——图像着色攻击,将输入样本转为灰度图,设计一种灰度图上色方法指导灰度图着色,最终利用经过上色的图像欺骗分类器实现无限制攻击。实验表明,这种方法制作的对抗样本在欺骗几种最先进的深度神经网络图像分类器方面有不俗表现,并且通过了人类感知研究测试。  相似文献   

12.
基于深度学习的代码漏洞检测模型因其检测效率高和精度准的优势,逐步成为检测软件漏洞的重要方法,并在代码托管平台Github的代码审计服务中发挥重要作用.然而,深度神经网络已被证明容易受到对抗攻击的干扰,这导致基于深度学习的漏洞检测模型存在遭受攻击,降低检测准确率的风险.因此,构建针对漏洞检测模型的对抗攻击,不仅可以发掘此类模型的安全缺陷,而且有助于评估模型的鲁棒性,进而通过相应的方法提升模型性能.但现有的面向漏洞检测模型的对抗攻击方法,依赖于通用的代码转换工具,并未提出针对性的代码扰动操作和决策算法,因此难以生成有效的对抗样本,且对抗样本的合法性依赖于人工检查.针对上述问题,提出了一种面向漏洞检测模型的强化学习式对抗攻击方法.本方法首先设计了一系列语义约束且漏洞保留的代码扰动操作作为扰动集合;其次,将具备漏洞的代码样本作为输入,利用强化学习模型选取具体的扰动操作序列.最后,根据代码样本的语法树节点类型寻找扰动的潜在位置,进行代码转换,从而生成对抗样本.本文基于SARD和NVD构建了两个实验数据集共14,278个代码样本并以此训练了四个具备不同特点的漏洞检测模型作为攻击目标.针对每个目标模型,训练了一个强化学习网络进行对抗攻击.结果显示,本文的攻击方法导致模型的召回率降低了74.34%,攻击成功率达到96.71%,相较基线方法,攻击成功率平均提升了68.76%.实验证明了当前的漏洞检测模型存在被攻击的风险,需要进一步研究提升模型的鲁棒性.  相似文献   

13.
车牌识别系统的黑盒对抗攻击   总被引:1,自引:0,他引:1  
深度神经网络(Deep neural network,DNN)作为最常用的深度学习方法之一,广泛应用于各个领域.然而,DNN容易受到对抗攻击的威胁,因此通过对抗攻击来检测应用系统中DNN的漏洞至关重要.针对车牌识别系统进行漏洞检测,在完全未知模型内部结构信息的前提下展开黑盒攻击,发现商用车牌识别系统存在安全漏洞.提出基...  相似文献   

14.
语音是人机交互的重要载体,语音中既包含语义信息,还包含性别、年龄、情感等附属信息.深度学习的发展使得各类语音处理任务的性能得到了显著提升,智能语音处理的产品已应用于移动终端、车载设备以及智能家居等场景.语音信息被准确地识别是人与设备实现可信交互的重要基础,语音传递过程中的安全问题也受到了广泛关注.对抗样本攻击是最近几年...  相似文献   

15.
随着深度学习研究与应用的迅速发展,人工智能安全问题日益突出。近年来,深度学习模型的脆弱性和不鲁棒性被不断的揭示,针对深度学习模型的攻击方法层出不穷,而后门攻击就是其中一类新的攻击范式。与对抗样本和数据投毒不同,后门攻击者在模型的训练数据中添加触发器并改变对应的标签为目标类别。深度学习模型在中毒数据集上训练后就被植入了可由触发器激活的后门,使得模型对于正常输入仍可保持高精度的工作,而当输入具有触发器时,模型将按照攻击者所指定的目标类别输出。在这种新的攻击场景和设置下,深度学习模型表现出了极大的脆弱性,这对人工智能领域产生了极大的安全威胁,后门攻击也成为了一个热门研究方向。因此,为了更好的提高深度学习模型对于后门攻击的安全性,本文针对深度学习中的后门攻击方法进行了全面的分析。首先分析了后门攻击和其他攻击范式的区别,定义了基本的攻击方法和流程,然后对后门攻击的敌手模型、评估指标、攻击设置等方面进行了总结。接着,将现有的攻击方法从可见性、触发器类型、标签类型以及攻击场景等多个维度进行分类,包含了计算机视觉和自然语言处理在内的多个领域。此外,还总结了后门攻击研究中常用的任务、数据集与深度学习模型,并介绍了后门攻击在数据隐私、模型保护以及模型水印等方面的有益应用,最后对未来的关键研究方向进行了展望。  相似文献   

16.
深度学习作为人工智能技术的重要组成部分,被广泛应用于计算机视觉和自然语言处理等领域.尽管深度学习在图像分类和目标检测等任务中取得了较好性能,但是对抗攻击的存在对深度学习模型的安全应用构成了潜在威胁,进而影响了模型的安全性.在简述对抗样本的概念及其产生原因的基础上,分析对抗攻击的主要攻击方式及目标,研究具有代表性的经典对...  相似文献   

17.
近年来,深度神经网络(deep neural network, DNN)在图像领域取得了巨大的进展.然而研究表明, DNN容易受到对抗样本的干扰,表现出较差的鲁棒性.通过生成对抗样本攻击DNN,可以对DNN的鲁棒性进行评估,进而采取相应的防御方法提高DNN的鲁棒性.现有对抗样本生成方法依旧存在生成扰动稀疏性不足、扰动幅度过大等缺陷.提出一种基于稀疏扰动的对抗样本生成方法——SparseAG (sparse perturbation based adversarial example generation),该方法针对图像样本能够生成较为稀疏并且幅度较小的扰动.具体来讲, SparseAG方法首先基于损失函数关于输入图像的梯度值迭代地选择扰动点来生成初始对抗样本,每一次迭代按照梯度值由大到小的顺序确定新增扰动点的候选集,选择使损失函数值最小的扰动添加到图像中.其次,针对初始扰动方案,通过一种扰动优化策略来提高对抗样本的稀疏性和真实性,基于每个扰动的重要性来改进扰动以跳出局部最优,并进一步减少冗余扰动以及冗余扰动幅度.选取CIFAR-10数据集以及ImageNet数据集,在目标攻击以及非目...  相似文献   

18.
深度学习在众多领域取得了巨大成功。然而,其强大的数据拟合能力隐藏着不可解释的“捷径学习”现象,从而引发深度模型脆弱、易受攻击的安全隐患。众多研究表明,攻击者向正常数据中添加人类无法察觉的微小扰动,便可能造成模型产生灾难性的错误输出,这严重限制了深度学习在安全敏感领域的应用。对此,研究者提出了各种对抗性防御方法。其中,对抗训练是典型的启发式防御方法。它将对抗攻击与对抗防御注入一个框架,一方面通过攻击已有模型学习生成对抗样本,另一方面利用对抗样本进一步开展模型训练,从而提升模型的鲁棒性。为此,本文围绕对抗训练,首先,阐述了对抗训练的基本框架;其次,对对抗训练框架下的对抗样本生成、对抗模型防御性训练等方法与关键技术进行分类梳理;然后,对评估对抗训练鲁棒性的数据集及攻击方式进行总结;最后,通过对当前对抗训练所面临挑战的分析,本文给出了其未来的几个发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号