共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
为更好地满足了推荐系统中用户个性化推荐的需求,提高推荐系统的性能。研究了用户兴趣模型,提出了一种用户兴趣模型自动更新的方法,在数据采集过程中,通过对隐性数据的采集,动态地更新用户模型;模型使用向量空间模型的表示方法。实验结果表明,新的模型提高了计算用户最近邻居的准确性,算法在不同推荐范围都用良好的表现,并具有很好的耐久性。 相似文献
3.
基于用户兴趣特征提取的推荐算法研究* 总被引:2,自引:0,他引:2
传统的推荐算法一定程度上降低了网络消费者的搜索成本,但难以实时提供消费者满意的推荐服务,也忽略了用户偏好动态转移性。为了提高电子商务系统的推荐质量,从用户偏好的行为特征入手,建立了网络用户的兴趣特征提取模型,并设计了相应的推荐算法。通过对用户兴趣特征提取模型的检验和用户兴趣度矩阵的建立,依据与目标用户偏好相似的邻居用户对商品的兴趣程度预测用户对未浏览商品的兴趣度,并选择兴趣度值较高的N个商品推荐给用户。实验结果表明,在用户偏好动态转移的情况下,所设计的推荐算法的推荐精度和推荐效率明显提高,提高了网络用户的 相似文献
4.
5.
6.
为了解决信息过载问题,提出了一种融合知识图谱与注意力机制的推荐模型.在该模型中,将知识图谱作为辅助信息进行嵌入,可以缓解传统推荐算法数据稀疏和冷启动问题,并且给推荐结果带来可解释性.为了提升推荐准确率以及捕捉用户兴趣的动态变化,再结合深度学习中的神经网络以及注意力机制生成用户自适应表示,加上动态因子来更好地捕捉用户动态... 相似文献
7.
8.
9.
针对目前基于评论文本的推荐算法存在文本特征和隐含信息提取能力不足的问题, 提出一种基于注意力机制的深度学习推荐算法. 通过分别构建用户和项目的评论文本表示, 利用双向门控循环单元提取文本的上下文依赖关系以获得文本特征表示, 引入注意力机制, 更准确的获取用户兴趣偏好和项目属性特征. 将生成的用户和项目评论数据的两组隐含... 相似文献
10.
针对现有的序列推荐算法仅利用长短期顺序行为和用户交互行为进行推荐,没有充分考虑用户交互行为之间的时空间隔信息对用户推荐序列更深层影响的问题,提出一种融合时空网络和自注意力的兴趣点序列推荐模型。将用户签到之间的时间和空间间隔信息融入门控循环单元网络,使用用户的历史签到序列信息获取用户的偏好,通过自注意力机制对签到地点进行建模,获得用户对于模型的权重序列,通过签到地点与候选地点的时间间隔和空间间隔匹配兴趣点,为用户推荐一个兴趣点序列。在两个数据集上的实验结果表明,提出方法在召回率上优于之前先进的方法。 相似文献
11.
12.
针对推荐算法中用户评分矩阵维度高、计算量大的问题,为更加真实地反映用户本身评分偏好,提出一种结合用户聚类和评分偏好的推荐算法。先利用PCA降维和k-means聚类对用户评分矩阵进行预处理,在最近邻选取方法上,添加用户共同评分数量作为约束,利用用户和相似簇的相似度对相似簇内评分加权求和生成基本预测评分;再综合用户评分偏置和用户项目类型偏好,建立用户评分偏好模型;最后通过多元线性回归确定每部分的权重,生成最终的预测评分。对比实验结果表明,新算法能更真实地反映用户评分,有效减少计算量并提高推荐系统的预测准确率,更好地满足用户对于推荐系统的个性化需求。 相似文献
13.
影响力最大化问题旨在社交网络中选取一组有效的种子用户,使信息通过这些用户能够达到最大范围的传播.传统影响力最大化问题的研究依赖于特定的网络结构和扩散模型,而经过人工处理的简化网络和建立在假设之上的扩散模型在评估用户真实影响力时存在较大局限.为解决该问题,提出一种基于用户互动表示的影响力最大化算法(IMUIR).首先,根据用户互动痕迹进行随机采样,构造用户上下文对,并经过SkipGram模型训练得到用户的向量表示;然后,利用贪婪策略,根据源用户自身的活跃度和这些用户与其他用户的交互联系度选择最佳种子集.为验证IMUIR的有效性,将其与Random、AC、Kcore和Imfector在2个拥有真实互动信息的社交网络上进行对比实验.结果表明,利用IMUIR选出的种子集质量更高,产生的影响传播范围较广,且在2个数据集上表现稳定. 相似文献
14.
影响力最大化问题旨在社交网络中选取一组有效的种子用户,使信息通过这些用户能够达到最大范围的传播.传统影响力最大化问题的研究依赖于特定的网络结构和扩散模型,而经过人工处理的简化网络和建立在假设之上的扩散模型在评估用户真实影响力时存在较大局限.为解决该问题,提出一种基于用户互动表示的影响力最大化算法(IMUIR).首先,根据用户互动痕迹进行随机采样,构造用户上下文对,并经过SkipGram模型训练得到用户的向量表示;然后,利用贪婪策略,根据源用户自身的活跃度和这些用户与其他用户的交互联系度选择最佳种子集.为验证IMUIR的有效性,将其与Random、AC、Kcore和Imfector在2个拥有真实互动信息的社交网络上进行对比实验.结果表明,利用IMUIR选出的种子集质量更高,产生的影响传播范围较广,且在2个数据集上表现稳定. 相似文献
15.
Recommender systems are one of the most im- portant technologies in e-commerce to help users filter out the overload of information. However, current mainstream recommendation algorithms, such as the collaborative filter- ing CF family, have problems ness. These problems hinder such as scalability and sparse- further developments of rec- ommender systems. We propose a new recommendation al- gorithm based on item quality and user rating preferences, which can significantly decrease the computing complexity. Besides, it is interpretable and works better when the data is sparse. Through extensive experiments on three benchmark data sets, we show that our algorithm achieves higher accu- racy in rating prediction compared with the traditional ap- proaches. Furthermore, the results also demonstrate that the problem of rating prediction depends strongly on item quality and user rating preferences, thus opens new paths for further study. 相似文献
16.
Recommender systems are one of the most important technologies in e-commerce to help users filter out the overload of information. However, current mainstream recommendation algorithms, such as the collaborative filtering CF family, have problems such as scalability and sparseness. These problems hinder further developments of recommender systems. We propose a new recommendation algorithm based on item quality and user rating preferences, which can significantly decrease the computing complexity. Besides, it is interpretable and works better when the data is sparse. Through extensive experiments on three benchmark data sets, we show that our algorithm achieves higher accuracy in rating prediction compared with the traditional approaches. Furthermore, the results also demonstrate that the problem of rating prediction depends strongly on item quality and user rating preferences, thus opens new paths for further study. 相似文献
17.
随着社交网的广泛流行,用户的数量也急剧增加,针对社交网络用户难以在海量用户环境中快速发现其可能感兴趣的潜在好友的问题,各种推荐算法应运而生,协同过滤算法便是其中最为成功的思想。然而目前的协同过滤算法普遍存在数据稀疏性和推荐精度低等问题,为此提出一种基于动态K-means聚类双边兴趣协同过滤好友推荐算法。该算法结合动态K-means算法对用户进行聚类以降低稀疏性,同时提出相似度可信值的概念调整相似度计算方法以提高相似度精度;利用调整后的相似度分别从用户的吸引与偏好两方面计算近邻用户集,综合考虑这两方面近邻对当前用户的择友影响来生成推荐列表。实验证明,相较于基于用户的协同过滤算法,该算法能有效提高系统的推荐精度与效率。 相似文献
18.
个性化推荐系统中使用最广泛的算法是协同过滤算法,针对该算法存在的数据稀疏和扩展性差问题,提出了一种基于用户兴趣和社交信任的聚类推荐算法。该算法首先基于聚类技术根据用户评分信息将具有相同兴趣的用户聚为一类,并建立基于用户兴趣相近的邻居集合。为了提高兴趣相似度计算的准确性,采用了修正余弦计算公式来消除评分标准的差异问题。然后,引入信任机制,通过定义直接信任、间接信任、传递路径和计算方法来度量社交网络用户之间隐含的信任值,将社交网络转换为信任网络,依据信任程度来创建基于社交信任的邻居集合。通过加权的方式将基于两种邻居集合的预测值融合起来为用户产生项目的推荐。在Douban数据集上进行仿真实验,确定了最优的协调因子值和分类数值,并与基于用户的协同过滤算法和基于信任的推荐算法进行对比,实验结果表明,所提算法的平均绝对误差(MAE)减少了6.7%,准确率(precision)、覆盖(recall)和F1值分别增加了25%、40%和37%,有效提高了推荐系统的推荐质量。 相似文献
19.
周奇峰 《网络安全技术与应用》2014,(6):52-53
随着互联网海量信息的不断涌现,根据用户的兴趣提供相关查询结果,是现有搜索引擎要考虑的一个问题,PageRank算法是基于链接的排序算法,已在Google搜索引擎广泛应用,但其忽略了用户个性化需求。采用网页预分类技术,来表示用户查询的兴趣度,进一步提出改进传统的PageRank算法,从而能适当提高用户在使用搜索引擎方面的个性化需求。 相似文献