共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
决策树是常用的数据挖掘方法,扩展属性的选择是决策树归纳的核心问题。基于离散化方法的连续值决策
树归纳在选择扩展属性时,需要度量每一个条件属性的每一个割点的分类不确定性,并通过这些割点的不确定性选择
扩展属性,其计算时间复杂度高。针对这一问题,提出了一种基于相容粗糙集技术的连续值属性决策树归纳方法。该
方法首先利用相容粗糙集技术选择扩展属性,然后找出该属性的最优割点,分割样例集并递归地构建决策树。从理论
上分析了该算法的计算时间复杂度,并在多个数据集上进行了实验。实验结果及对实验结果的统计分析均表明,提出
的方法在计算复杂度和分类精度方面均优于其他相关方法。 相似文献
5.
基于粗集和熵的多变量决策树的构造算法 总被引:1,自引:0,他引:1
多变量决策树是一种有效用于分类的数据挖掘方法,构造的关键是根据属性之间的相关性选择合适的属性组合作为节点。针对传统方法中用相对核进行多变量检验中属性选择存在的不足,首先对每个节点包含的属性个数加以限制,然后由重新定义的属性依赖度和基于条件熵的距离函数选择相关的属性组合作为节点,从而提出一种新的构造算法。实例说明,该算法不仅有效降低了树的高度,而且还兼顾了分类的可读性。 相似文献
6.
本文将粗糙集理论应用到决策树生成过程中,利用变精度粗糙集理论属性约简的特性在决策树生成过程中在保证分类能力不变的前提下减少分支数目,并考虑到实际问题中噪声数据的影响。 相似文献
7.
基于粗糙集理论的属性约简算法 总被引:4,自引:1,他引:4
粗糙集理论是一种新的数据挖掘方法,其主要思想是保持分类能力不变的情况下,通过属性约简,达到发掘知识并简化知识的目的.从大量数据发现知识时,属性约简是一个关键问题.在理解和分析基于粗糙集理论的数据挖掘算法基础上,提出了一个基于属性依赖度的属性约简算法.实验结果表明,该算法能更有效地对决策系统进行约简. 相似文献
8.
9.
邹瑞芝 《数字社区&智能家居》2011,(12)
属性约简是粗糙集理论研究的重要内容之一,而求解最小约简是NP难问题。为了有效获取最优或次优约简,该文提出了一种基于遗传算法的粗糙集属性约简算法。该算法将属性核加入遗传算法的初始种群来增加收敛速度,而且在适应度函数中,通过计算决策属性对条件属性的依赖度,使该文算法既保证了全局寻优的特性又具有加强局部搜索的能力,能够获得最佳的搜索效果。该算法通过实例分析,证明是求解属性约简问题的快速有效方法。 相似文献
10.
11.
粗糙集理论知识库的属性重要度,体现的是去掉某个或某些属性前后的知识库分类变化的程度。对现有粗糙集理论的属性重要度确立方法的不足,充分考虑条件属性对决策的直接和间接的影响,提出一种新的基于粗糙集属性依赖度的属性重要度确定方法。此外,针对原有属性重要度与改进重要度的差别,讨论改进的属性重要度的意义,并证明改进的属性重要度更加可信。最后,利用改进的方法对机械故障属性重要度进行仿真;对比原有属性重要度的数据,改进方法获得的数据不但更符合属性约简结果,并且具有更大区分度,十分有利于决策者快速做出判断。 相似文献
12.
13.
在决策表中,为了评价某条件属性的重要性,不但要考虑这个属性(单一属性)相对于决策属性的重要性,还要考虑该条件属性与其他条件属性构成的属性集的重要性。在属性集依赖度比单一属性依赖度更加可信的事实基础上,提出了一个基于分辨矩阵的属性集依赖度计算方法。该方法能够较快地获得分辨矩阵,并直接求出属性集的依赖度,从而大大降低了算法的时间复杂度。实例验证了该方法具有较好的有效性和较低的时间复杂度。 相似文献
14.
基于属性重要度的ID3改进算法 总被引:8,自引:0,他引:8
ID3算法是数据挖掘中最经典的分类算法.该算法偏向于选择取值较多的属性,而属性值较多的属性不总是重要的,从而影响了分类预测的高效性.通过对ID3算法的研究,依据属性重要度粗糙集理论的思想,对经典的ID3算法做了相应的改进,改进后的ID3算法(AIID3),提高了算法的决策效率.最后的实例及应用表明,改进的算法更有效,更快速. 相似文献
15.
针对面向领域用户的决策规则挖掘问题,用属性序描述领域用户的需求和兴趣,模拟人脑分辨事物的过程,提出了一种属性序下的分层递阶决策规则挖掘算法.该算法在给定属性序下输出的决策规则集不仅具有唯一性,且对任意待识别样本不会作出矛盾的决策.实例和仿真实验结果表明了算法的有效性和可行性. 相似文献
16.
17.
形式概念分析是一种从形式背景进行数据分析和规则提取的强有力工具。属性拓扑作为一种新型的形式背景表示方法,直观地描述了属性之间的关联。利用属性拓扑可以更方便直观地计算形式概念和概念格。经过对现有属性拓扑的算法与流程的研究,分析了现有属性排序算法的特异性和层次局限性,通过结合度的概念,提出了一种属性衡量的新方式--属性度,并提出了基于属性度的属性排序算法。这种排序算法得到的结果更加灵活,消除了属性排序的层次局限性,对父属性的查找有明显的优势,为基于属性拓扑中的属性排序方法提供了指引方向。 相似文献
18.
为了解决基于差别矩阵属性约简的计算效率问题,分析了基于差别矩阵的属性约简算法的不足,给出了新的差别矩阵的定义,大大减少了差别矩阵中非空元素的个数,提高了属性约简算法的效率。利用单个属性的不可辨识性来计算出现频率最多的属性,进一步降低差别矩阵的大小,并设计了基于新的差别矩阵的快速属性约简算法。对UCI一些数据库进行了仿真,实验结果表明了新算法具有高效性。 相似文献
19.
值约简是粗糙集(Rough Set,RS)理论的一个重要研究课题,但由于值约简是一个NP-hard问题,目前还没有一个高效的值约简算法。基于集合理论,提出了关系积概念,把决策表的属性约简过程转化为关系积的运算,提高了属性约简的效率;利用各阶关系积生成时的信息,获得最小值约简表,从而解决了值约简这一NP问题。 相似文献
20.
属性约简是粗糙集理论的重要研究内容之一,对浓缩树结构中属性出现的频率进行加权,以属性频率的权重作为启发,以核为基础,从树中删除属性重要性最大的属性结点,直到树为空;为了找到信息系统的最优约简,在此基础上加了一个逆向消除的过程,直到不能再删为止。最后通过一个实例完整演示了该方法,证实其有效性。 相似文献