首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为了有效解决粒子群优化算法易陷入局部最优的缺陷,在粒子群优化优化算法(PSO)的基础上,引入莱维飞行,提出了一种基于莱维飞行的粒子群优化算法(LPSO)。该算法在迭代过程中,对粒子位置进化效果进行判断,若粒子多次迭代后仍无法进化到更优位置,则使用莱维飞行更新粒子位置。改进后的算法增加了粒子位置变化的活力,提高了算法的有效性。仿真实验结果表明,该算法在求解全局最优时,效果优于原始粒子群优化算法,在多峰值函数优化问题中其优越性更加突出。  相似文献   

2.
焊接机器人在工业上被广泛应用,焊接的任务规划直接关系到制造效率的提高.点焊机器人路径规划在仅考虑路径长度时可以简化为焊接顺序的优化问题,即旅行商问题.考虑到旅行商问题是NP完全问题,且是离散问题,提出一种结合莱维飞行的粒子群算法并对其进行离散化以求解此类路径优化问题.焊接机器人路径规划仿真结果验证了所提出方案的合理性和可行性.  相似文献   

3.
为了提高无线传感器网络(WSNs)的覆盖率,减少冗余覆盖,延长网络生存时间,在粒子群优化(PSO)算法的基础上,提出一种莱维飞行(LF)与粒子群优化相结合的(LF-PSO)算法.该算法以提高覆盖率为优化目标,通过建立数学模型来描述WSNs节点覆盖优化问题,利用算法对数学模型求解,达到优化节点覆盖的目的.仿真结果表明:该算法的运算结果达到了预期效果,优化了工作节点的布局,提高了覆盖率,是一种高效可行的WSNs节点覆盖算法.该算法非常适合应用到WSNs节点覆盖优化中,能够大大的提高节点的覆盖率.  相似文献   

4.
一种基于相似度的新型粒子群算法   总被引:5,自引:2,他引:5  
刘建华  樊晓平  瞿志华 《控制与决策》2007,22(10):1155-1159
分析了基本粒子群算法(PSO)全局搜索能力与收敛速度的矛盾,提出了粒子群相似度的概念.根据每个粒子与全局最优粒子的不同相似度,对基本PSO算法的惯性权重进行动态调整.同时提出一种根据相似度计算聚集度的方法,并根据聚集度的大小随机地对粒子重新赋值,控制粒子群的多样性,提高了全局搜索能力.典型优化问题的实例仿真验证了该算法的有效性.  相似文献   

5.
针对Otsu算法用于多阈值图像分割中存在运算时间长和精度低的不足, 利用群智能优化算法对图像分割算法进行优化.本文首先应用莱维飞行算法对樽海鞘群优化算法进行改进, 将多阈值Otsu函数作为优化算法的适应度函数, 利用改进后的LSSA寻找适应度函数的最大值, 同时获得相对应的多阈值.其次, 通过对几幅基本图像、伯克利大学图像分割库中的图像和实际污油图像进行多阈值Otsu分割研究, 在最佳适应度值、PSNR、SSIM指标以及算法耗时方面进行对比分析.实验结果表明本文提出的算法可以获得更为准确的分割阈值和更高的分割效率.  相似文献   

6.
简化的粒子群优化快速KNN分类算法   总被引:4,自引:0,他引:4  
提出了一种有效的k近邻分类文本分类算法,即SPSOKNN算法,该算法利用粒子群优化方法的随机搜索能力在训练集中随机搜索.在搜索k近邻的过程中,粒子群跳跃式移动,掠过大量不可能成为k近邻的文档向量,并且去除了粒子群进化过程中粒子速度的影响,从而可以更快速地找到测试样本的k个近邻.通过验证算法的有效性表明,在查找k近邻相同时,SPOSKNN算法的分类精度高于基本KNN算法。  相似文献   

7.
针对鸟群优化算法(BSA)在求解高维多极值优化问题时容易陷入局部最优解和出现早熟收敛的情况,在原始鸟群算法的基础上,在模拟鸟群飞行行为的过程中引入莱维飞行,提出了一种基于莱维飞行的改进算法——莱维-鸟群算法(LBSA)。这种算法替换了原算法中随机的飞行位置跳变,而采用莱维飞行更新鸟群飞行后的位置,大幅提高了鸟群的位置变化活力,提高了算法的有效性。仿真结果表明,在求解高维多极值优化问题时,该算法性能优于原始鸟群算法。  相似文献   

8.
张严  秦亮曦 《计算机科学》2020,47(7):154-160
针对樽海鞘群算法(Salp Swarm Algorithm,SSA)在寻优过程中存在的收敛速度较慢、容易陷入局部最优的缺点,提出了一种改进的采用莱维飞行策略的条件化更新的樽海鞘群算法(Levy Flight-based Conditional Updating Salp Swarm Algorithm,LECUSSA),并将其运用于分类算法的特征子集选择过程。首先,利用莱维飞行策略的长短跳跃特点对领导者位置进行随机更新,以增强全局最优的搜索能力;其次,增加对追随者位置的更新条件,让追随者不再盲目地跟随,从而加快收敛速度。在23个优化基准函数上对LECUSSA算法与其他算法进行了性能比较实验;并把算法运用到支持向量机(Support Vector Machine,SVM)算法的分类特征子集选择中,采用8个UCI数据集对特征选择后的分类结果进行了性能比较实验。实验结果表明,LECUSSA具有良好的全局最优搜索能力和较快的收敛速度,利用LECUSSA算法进行特征选择后,能够找到最佳分类准确率的特征子集。  相似文献   

9.
彭力  王茂海 《控制工程》2012,19(1):102-105
使用线性系统理论分析了粒子群算法(Particle Swarm Optimization,PS0)陷入局部极值的原因。为使粒子种群跳出局部极值粒子重新获得活性,借鉴了鱼群算法中拥挤度因子的概念,提出了前馈扰动粒子群算法(Feedforward Disturbance Particle Swarm Optimization,FDPSO),在以当前最优值为圆心拥挤度因子为半径的圆域内统计粒子的数量,当粒子数量大于某一常数时候,认为种群将会陷入局部最优,因此提前给种群加入扰动。仿真实验证明了理论及所提出算法的有效性。  相似文献   

10.
针对粒子群算法易于过早收敛的不足,通过引入粒子间新的相似度的概念来度量粒子群的多样性程度,并用自适应变化阈值手段来控制调整粒子群算法的收敛速度,使其缓缓趋向于全局最优,在粒子群算法迭代过程中以相似度为基础,通过高斯等噪声扰动来重新调整粒子的位置从而避免算法陷入局部最优,从而得到了一种PSO算法的改进算法,实验和性能分析表明,新算法可以有效提高算法的全局搜索能力,并有效回避收敛早熟问题。  相似文献   

11.
针对经典菌群觅食算法因固定趋化步长导致的求解精度不高、收敛性能差等缺陷,提出一种基于Levy飞行的菌群觅食算法,其特点是利用基于Levy分布的趋化步长改善算法的求解精度与收敛性能,借助Levy飞行随机游走策略改善细菌迁徙位置.多个基准测试函数的实验结果表明,该算法在求解质量和收敛性能上均取得了较好的改进效果.  相似文献   

12.
蝗虫优化算法是一种元启发式优化算法,能够用于解决任务调度问题。已有的改进蝗虫优化算法缺乏随机性,跳出局部最优的能力较弱,改进效果不够显著。针对这一问题,本文提出一种基于Levy飞行的改进蝗虫优化算法(LBGOA)。该算法引入基于Levy飞行的局部搜索机制增强算法的随机性,并采用基于线性递减参数的随机跳出策略来提高算法跳出局部最优的能力。CEC测试实验结果表明,所提出的算法拥有较强的搜索能力,在30个测试函数结果中能够获得17个最优解和6个次优解。将所提出的改进算法应用于边缘计算中的任务调度问题。任务调度仿真实验结果表明,所提出的算法能够有效提高搜索效果,相比GOA、OBLGOA、WOA、ALO、DA和PSO算法,LBGOA的搜索效果分别提升7.4%、7.5%、4.8%、27.7%、29.9%和20.7%。  相似文献   

13.
基于Logistic映射的新型混沌简化PSO算法   总被引:1,自引:0,他引:1  
针对基本粒子群算法易陷入局部最优、收敛速度慢、收敛精度差等问题,提出一种基于Logistic映射的新型混沌简化PSO算法(CIW-SPSO)。该算法引入混沌理论使惯性权重具有混沌搜索能力,同时使学习因子随寻优过程呈正弦函数变化,降低算法陷入局部最优的概率。使用6个经典测试函数进行仿真测试,结果表明:本算法收敛速度快,收敛精度高,能避免陷入局部最优,提升算法优化性能。  相似文献   

14.
在齿轮系设计问题中, 传统算法存在计算复杂与精度低等缺点, 海鸥优化算法(SOA)得益于其算法原理简单、通用性强、参数少等特性, 现多用于工程设计问题. 然而, 标准海鸥优化算法易出现寻优精度低、搜索速度慢等问题, 本文提出一种混合策略改进的海鸥优化算法(WLSOA). 首先, 利用非线性递减策略增强海鸥优化算法的探索开发能力, 提高寻优精度. 其次, 在海鸥攻击阶段引入自适应权重平衡全局与局部的搜索能力和加入莱维飞行步长对当前最优解进行扰动, 提高算法跳出局部最优值的能力. 然后分别使用WLSOA、黄金正弦算法、鲸鱼优化算法、粒子群优化算法、传统海鸥优化算法及最新提出的改进海鸥优化算法, 通过在9个经典的测试函数上进行仿真实验来探究WLSOA的性能. 结果表明, WLSOA比其他6种算法寻优精度更高, 收敛速度更快. 最后, 在齿轮系设计问题上, 通过与其他13种常见的群智能算法的比较表明, WLSOA的求解性能优于其他算法.  相似文献   

15.
针对粒子群优化算法(Particle Swarm Optimization,PSO)寻优速度慢、收敛精度不高且搜索结果波动性较大的缺点,提出了一种自适应简化粒子群优化算法(Self-Adjusted Simplified Particle Swarm Optimization,SASPSO)。在每次迭代过程中,粒子只受全局最优解影响,且加入按一定规律分布的锁定因子,令粒子受影响的程度有规律性。同时,利用锁定因子和当前粒子位置令惯性权重自适应配置,更有效地利用惯性权重对粒子群优化算法的影响。引入4种近期提出的改进粒子群算法同时搜索不同维度时的18个基准函数,与SASPSO的搜索结果对比,并使用T-test进行差异性分析。为了进一步分析算法性能,统计5个改进算法搜索100维函数达到期望值时的成功率与平均迭代次数。实验结果证明,SASPSO在无约束问题寻优中的收敛速度、寻优精度有了明显提升,且搜索结果异常值较少,波动性弱。将SASPSO应用于机床主轴结构参数优化问题,结果显示SASPSO优化性能更好。  相似文献   

16.
针对求解复杂优化问题时,灰狼(GWO)算法存在全局搜索能力不足、容易陷入局部最优值等问题,提出一种引入莱维飞行与动态权重策略的改进灰狼算法(LGWO)。基于Singer混沌映射初始化灰狼个体位置,增加种群多样性;收敛因子采用新的非线性更新策略,在种群迭代全期平衡全局搜索与局部搜索能力;在种群位置更新公式引入莱维飞行与动态权重策略,增加种群跳出局部最优值的概率,提升寻优准确度。通过8个基准函数的测试,并与其他优化算法和改进算法进行对比,LGWO取得了最优的收敛速度与预测精度,并验证了LGWO算法优化高维复杂问题的有效性。  相似文献   

17.
以保证全局收敛的随机微粒群算法为基础,文章提出了一种双群体随机微粒群算法——DB-SPSO。该方法采用两个群体同时进化,一个群体在进化过程中所出现的停止微粒由另一群体的微粒来代替,并和此群体中其余的微粒一起继续进化。通过对此算法的参数适用范围及收敛率进行讨论,给出了此算法的适用范围。其仿真结果表明:对于单峰函数和多峰函数,此算法都能够取得较好的优化效果。  相似文献   

18.
针对基本和声搜索(Harmony search, HS)算法收敛速度较慢、易陷入局部最优和计算精度不高的缺点,结合正余弦优化算子、Levy飞行机制和参数动态调整策略,提出一种改进的和声搜索算法。该算法在即兴创作阶段,首先引入正余弦优化算子和微调带宽相结合的方式对和声向量进行微调操作,充分利用最优个体和当前个体的位置信息,提高算法的计算精度和收敛速度;再采用Levy飞行机制对微调带宽进行更新,避免算法陷入局部最优,提高全局搜索能力;在算法迭代过程中,对和声记忆库存储概率、基音微调概率和搜索域进行自适应动态调整,以进一步提高算法收敛性能。在10个基准函数上进行性能对比试验的结果表明,本文提出的算法具有较强的全局搜索能力,较快的收敛速度和较高的计算精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号