共查询到20条相似文献,搜索用时 62 毫秒
1.
文本情感是信息挖掘的一个新兴领域,近年受到管理学等相关领域的广泛关注。目前,文本情感分析使用的方法主要有情感词典方法和机器学习方法。由于文本情感分析的结果对优化政府、企业以及消费者决策具有重大意义,以文本情感分析的方法为视角,对情感词典的方法、有监督的机器学习方法和弱监督的深度学习方法以及其他方法的相关文献进行了梳理并做出评述。此外,指出虽然文本情感分析领域的学者基于情感词典和有监督的机器学习方法已提出许多情感分析模型,但准确率和效率普遍不高,进一步的研究重点应在于使用深度学习的方法处理文本情感,并提出未来的研究方向。 相似文献
2.
文本情感分类通过对带有情感色彩的主观性文本进行分析和推理,帮助用户更好地做出判断与决策。针对传统情感分类模型难以根据上下文信息调整词向量的问题,提出一种双通道文本情感分类模型。利用ELMo和Glove预训练模型分别生成动态和静态词向量,通过堆叠嵌入2种词向量生成输入向量。采用自注意力机制处理输入向量,计算内部的词依赖关系。构建融合卷积神经网络(CNN)和双向门控递归单元(BiGRU)的双通道神经网络结构,同时获取文本局部特征和全局特征。最终将双通道处理结果进行拼接,经过全连接层处理后输入分类器获得文本情感分类结果。实验结果表明,与同类情感分类模型中性能较优的H-BiGRU模型相比,ELMo-CNN-BiGRU模型在IMDB、yelp和sentiment140数据集上的准确率和F1值分别提升了2.42、1.98、2.52和2.40、1.94、2.43个百分点,具有更好的短文本情感分类效果和稳定性。 相似文献
3.
多语言文本的情感分析是情感分析领域的重要问题之一,而现有的情感分析方法着重于对单语言文本的研究.本文针对中英混合文本提出了一种细粒度情感分析模型,通过基于大规模语料的预训练语言模型得到上下文语义相关的词向量,将词向量输入双向LSTM网络学习文本的情感表征,使用多语言注意力机制分别针对单语和双语文本提取关键情感表征,最终通过并行融合的方式提升情感分类效果.本文使用NLPCC2018多语言文本情绪分析任务数据集进行细粒度情感分析,对比评测任务中的最好结果,本文模型得到的宏平均F1值提高至0. 581,表明了本文方法的有效性. 相似文献
4.
情感原因提取是情感计算领域研究的一个新方向,是一种细粒度的情感分析,其目的是要找出给定文档中触发情感的那部分文本,是对情感的一种追根溯源.情感原因提取涉及到语言学、心理学等相关的领域知识,具有较高的学术研究价值和广泛的应用场景.尽管情感计算的相关研究大多集中在情感识别、情感预测、情感信息抽取等方面,但近些年不少学者已开始深入到情感背后的原因分析与提取上,并产生了较为丰富的成果.从问题定义、任务类别、研究方法、主流数据集、评测指标等多个角度对基于文本的情感原因自动提取的研究成果进行全面回顾和分析,重点对情感原因提取的方法特别是基于深度学习的方法进行了梳理,最后总结了现有情感原因提取工作的不足及其未来所面临的挑战. 相似文献
5.
在计算社会科学中,理解政治新闻文本中不同政治实体间的情感关系是文本分类领域一项新的研究内容。传统的情感分析方法没有考虑实体之间情感表达的方向,不适用于政治新闻文本领域。针对这一问题,本文提出了一种基于注意力机制的双变换神经网络的双向编码表示(bi-directional encoder representations from transformers, BERT)有向情感文本分类模型。该模型由输入模块、情感分析模块、政治实体方向模块和分类模块四部分组成。情感分析模块和政治实体方向模块具有相同结构,都先采用BERT预训练模型对输入信息进行词嵌入,再采用三层神经网络分别提取实体之间的情感信息和情感方向信息,最后使用注意力机制将两种信息融合,实现对政治新闻文本的分类。在相关数据集上进行实验,结果表明该模型优于现有模型。 相似文献
6.
文本情感分析已经逐渐成为自然语言处理(NLP)的重要内容,并在系统推荐、用户情感信息获取,为政府、企业提供舆情参考等领域越来越占据重要地位。通过文献调研的方式,对情感分析领域的方法进行对比和综述。首先,从时间、方法等维度对情感分析的方法进行文献调研;然后,对情感分析的主要方法、应用场景进行归纳总结和对比;最后,在此基础上分析每种方法的优缺点。根据分析结果可以知道,在面对不同的任务场景,主要有三种情感分析的方法:基于情感字典的情感分析法、基于机器学习的情感分析法和基于深度学习的情感分析法,基于多策略混合的方法成为改进的趋势。文献调研表明,文本情感分析的技术方法还有改进的空间,在电子商务、心理治疗、舆情监控方面有较大市场和发展前景。 相似文献
7.
随着微博用户数量的快速增长,微博中所携带的一些情感和观点对社会的影响越来越大,尤其是一些涉及到公众人身安全的负面情绪,可能会影响到社会的稳定,因此进行微博情感分析意义重大。微博情感分析的内容包括微博语料的获取、微博语料的预处理和情感分析方法等,常用的情感分析方法有基于情感词典的方法、基于机器学习的方法和基于深度学习的方法。随着注意力机制在NLP领域的广泛使用,很多研究者开始将注意力机制融合到深度学习模型中进行情感分析,这使得情感分析的准确率得到了很大的提升。谷歌提出的BERT模型本质上也是基于注意力机制实现的,BERT模型在情感分析领域取得了突破性的进展。 相似文献
8.
传统文本情感分析,通常从文本(可以是文档、段落或句子)整体出发,只能给出一整句话的情感值,无法准确表达用户对不同目标(情感附着物)的情感倾向.因此,本文以深度学习算法为基础进行细粒度情感分析研究.通过分析注意力编码网络的结构和算法原理,提出相应的情感分析框架,以及文本预处理和文本表示方法.该模型在公开数据集SemEval 2014上进行了实验,结果显示基于注意力编码网络的情感分析模型可以获得更高的准确率. 相似文献
9.
提出一种结合ALBERT预训练语言模型与具有多极正交注意力机制的BiSRU弹幕文本情感模型ALBERT-DPCRNN。使用ALBERT预训练语言模型获取文本的动态特征表示,使得句子中同一个词在不同上下文语境中具有不同的词向量表达。结合带有多级正交注意力机制的BiSRU模块来提高模型捕捉弹幕中隐式情感信息的能力。实验结果表明,该模型准确率达到94.5%。 相似文献
10.
11.
短文本情感倾向分析是自然语言处理领域的关键研究问题之一.情感倾向分析是用于检测语言所蕴含主观倾向语义的一系列方法、技术和工具,是对文本深层语义理解的关键.短文本数据的随意性、高歧义性以及简短性使得传统基于特征工程和机器学习分类技术的情感倾向分析任务性能有限.随着深度学习技术在自然语言处理中的广泛应用,基于深度学习的短文... 相似文献
12.
随着互联网整体水平的提高,大量基于维吾尔文的网络信息不断建立,引起了对不同领域的信息进行情感倾向性分析的迫切需要。该文考虑到维吾尔文没有足够的情感训练语料和完整的情感词典,结合机器学习方法和词典方法的优点,构建一个分类器模型 LCUSCM(Lexicon-based and Corpus-based Uyghur Text Sentiment Classification Model),先用自己构建的维吾尔文情感词典对语料进行高质量的情感分类,分类过程中对词典进行递归扩充,再根据每条句子的情感得分,从词典分类的结果中选择一部分语料来训练一个分类器并改进第一步的分类结果。此方法的正确率比单独使用机器学习方法提高了9.13%, 比词典方法提高了1.82%。 相似文献
13.
王力 《计算机技术与发展》2022,(1):141-146
随着数字媒体技术的快速发展,弹幕在电子产品评测视频中的使用频率逐年增高,越来越多的用户倾向于通过这种方式了解产品的信息并发表自己的见解.该类弹幕评论除了具有短小、实时性强等特点外,还包含着大量弹幕用户的情感倾向信息.这些信息对于网站和商家都具有重要意义.针对这个问题,对爬取的华为P30手机评测视频共9万2千余条视频弹幕... 相似文献
14.
在文本情感分析研究中,一条评论分别包含了篇章级、句子级和词语级等不同粒度的语义信息,而不同的词和句子在情感分类中所起的作用也是不同的,直接使用整条评论进行建模的情感分析方法则过于粗糙,同时也忽略了表达情感的用户信息和被评价的产品信息。针对该问题,提出一种基于多注意力机制的层次神经网络模型。该模型分别从词语级别、句子级别和篇章级别获取语义信息,并分别在句子级和篇章级引入基于用户和商品的注意力机制来计算不同句子和词的重要性。最后通过三个公开数据集进行测试验证,实验结果表明,基于多注意力层次神经网络的文本情感分析方法较其他模型性能有显著的提升。 相似文献
15.
16.
方面级情感分析是自然语言处理的热门研究方向之一,相比于传统的情感分析技术,基于方面的情感分析是细粒度的,能够判断句子中多个目标的情感倾向,能更加准确地挖掘用户对目标的情感极性。针对以往研究忽略目标单独建模的问题,提出了一种基于双向长短期记忆神经网络(BiLSTM)的交互注意力神经网络模型(Bi-IAN)。该模型通过BiLSTM对目标和上下文分别进行建模,获得目标和上下文的隐藏表示,提取其中的语义信息。接下来利用交互注意模块学习上下文和目标之间的注意力,分别生成目标和上下文的表示,捕捉目标和上下文之内和之间的相关性,并重构评价对象和上下文的表示,最终通过非线性层得到分类结果。在数据集SemEval 2014任务4和Chinese review datasets上的实验训练显示,在正确率和F1-score上,比现有的基准情感分析模型有更好的效果。 相似文献
17.
微博情感分析旨在挖掘网民对特定事件的观点和看法,是网络舆情监测的重要内容.目前的微博情感分析模型一般使用Word2Vector或GloVe等静态词向量方法,不能很好地解决一词多义问题;另外,使用的单一词语层Attention机制未能充分考虑文本层次结构的重要性,对句间关系捕获不足.针对这些问题,提出一种基于BERT和层... 相似文献
18.
特定目标情感分析作为情感分析一个重要的子任务,近年来得到越来越多研究人员的关注.针对在特定目标情感分析中,将注意力机制和LSTM等序列性输入网络相结合的网络模型训练时间长、且无法对文本进行平行化输入等问题,提出一种基于多注意力卷积神经网络(multi-attention convolution neural networks, MATT-CNN)的特定目标情感分析方法.相比基于注意力机制的LSTM网络,该方法可以接收平行化输入的文本信息,大大降低了网络模型的训练时间.同时,该方法通过结合多种注意力机制有效弥补了仅仅依赖内容层面注意力机制的不足,使模型在不需要例如依存句法分析等外部知识的情况下,获取更深层次的情感特征信息,有效识别不同目标的情感极性.最后在SemEval2014数据集和汽车领域数据集(automotive-domain data, ADD)进行实验,取得了比普通卷积神经网络、基于单注意力机制的卷积神经网络和基于注意力机制的LSTM网络更好的效果. 相似文献
19.
对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源。提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新模型。基于双向门控循环单元(BiGRU)神经网络的通道负责提取语义特征,而基于全连接神经网络的通道负责提取情感特征;同时,在两个通道中均引入注意力机制以更好地提取关键信息,并且均采用预训练模型BERT提供词向量,通过BERT依据上下文语境对词向量的动态调整,将真实情感语义嵌入到模型;最后,通过对双通道的语义特征与情感特征进行融合,获取最终语义表达。实验结果表明,相比其他词向量工具,BERT的特征提取能力更强,而情感信息通道和注意力机制增强了模型捕捉情感语义的能力,明显提升了情感分类性能,且在收敛速度和稳定性上更优。 相似文献
20.
针对传统的卷积神经网络未能充分利用不同通道间的文本特征语义信息和关联信息,以及传统的词向量表示方法采用静态方式对文本信息进行提取,忽略了文本的位置信息,从而导致文本情感分类不准确的问题,提出了一种结合ALBERT(a lite BERT)和注意力特征分割融合网络(attention feature split fusion network,AFSFN)的中文短文本情感分类模型ALBERT-AFSFN。该模型利用ALBERT对文本进行词向量表示,提升词向量的表征能力;通过注意力特征分割融合网络将特征分割为两组,对两组不同通道的特征进行提取和融合,最大程度保留不同通道之间的语义关联信息;借助Softmax函数对中文短文本情感进行分类,得到文本的情感倾向。在三个公开数据集Chnsenticorp、waimai-10k和weibo-100k上的准确率分别达到了93.33%、88.98%和97.81%,F1值也分别达到了93.23%、88.47%和97.78%,结果表明提出的方法在中文短文本情感分析中能够达到更好的分类效果。 相似文献