共查询到18条相似文献,搜索用时 46 毫秒
1.
文本情感是信息挖掘的一个新兴领域,近年受到管理学等相关领域的广泛关注。目前,文本情感分析使用的方法主要有情感词典方法和机器学习方法。由于文本情感分析的结果对优化政府、企业以及消费者决策具有重大意义,以文本情感分析的方法为视角,对情感词典的方法、有监督的机器学习方法和弱监督的深度学习方法以及其他方法的相关文献进行了梳理并做出评述。此外,指出虽然文本情感分析领域的学者基于情感词典和有监督的机器学习方法已提出许多情感分析模型,但准确率和效率普遍不高,进一步的研究重点应在于使用深度学习的方法处理文本情感,并提出未来的研究方向。 相似文献
2.
文本情感分类通过对带有情感色彩的主观性文本进行分析和推理,帮助用户更好地做出判断与决策。针对传统情感分类模型难以根据上下文信息调整词向量的问题,提出一种双通道文本情感分类模型。利用ELMo和Glove预训练模型分别生成动态和静态词向量,通过堆叠嵌入2种词向量生成输入向量。采用自注意力机制处理输入向量,计算内部的词依赖关系。构建融合卷积神经网络(CNN)和双向门控递归单元(BiGRU)的双通道神经网络结构,同时获取文本局部特征和全局特征。最终将双通道处理结果进行拼接,经过全连接层处理后输入分类器获得文本情感分类结果。实验结果表明,与同类情感分类模型中性能较优的H-BiGRU模型相比,ELMo-CNN-BiGRU模型在IMDB、yelp和sentiment140数据集上的准确率和F1值分别提升了2.42、1.98、2.52和2.40、1.94、2.43个百分点,具有更好的短文本情感分类效果和稳定性。 相似文献
3.
情感原因提取是情感计算领域研究的一个新方向,是一种细粒度的情感分析,其目的是要找出给定文档中触发情感的那部分文本,是对情感的一种追根溯源.情感原因提取涉及到语言学、心理学等相关的领域知识,具有较高的学术研究价值和广泛的应用场景.尽管情感计算的相关研究大多集中在情感识别、情感预测、情感信息抽取等方面,但近些年不少学者已开始深入到情感背后的原因分析与提取上,并产生了较为丰富的成果.从问题定义、任务类别、研究方法、主流数据集、评测指标等多个角度对基于文本的情感原因自动提取的研究成果进行全面回顾和分析,重点对情感原因提取的方法特别是基于深度学习的方法进行了梳理,最后总结了现有情感原因提取工作的不足及其未来所面临的挑战. 相似文献
4.
多语言文本的情感分析是情感分析领域的重要问题之一,而现有的情感分析方法着重于对单语言文本的研究.本文针对中英混合文本提出了一种细粒度情感分析模型,通过基于大规模语料的预训练语言模型得到上下文语义相关的词向量,将词向量输入双向LSTM网络学习文本的情感表征,使用多语言注意力机制分别针对单语和双语文本提取关键情感表征,最终通过并行融合的方式提升情感分类效果.本文使用NLPCC2018多语言文本情绪分析任务数据集进行细粒度情感分析,对比评测任务中的最好结果,本文模型得到的宏平均F1值提高至0. 581,表明了本文方法的有效性. 相似文献
5.
在计算社会科学中,理解政治新闻文本中不同政治实体间的情感关系是文本分类领域一项新的研究内容。传统的情感分析方法没有考虑实体之间情感表达的方向,不适用于政治新闻文本领域。针对这一问题,本文提出了一种基于注意力机制的双变换神经网络的双向编码表示(bi-directional encoder representations from transformers, BERT)有向情感文本分类模型。该模型由输入模块、情感分析模块、政治实体方向模块和分类模块四部分组成。情感分析模块和政治实体方向模块具有相同结构,都先采用BERT预训练模型对输入信息进行词嵌入,再采用三层神经网络分别提取实体之间的情感信息和情感方向信息,最后使用注意力机制将两种信息融合,实现对政治新闻文本的分类。在相关数据集上进行实验,结果表明该模型优于现有模型。 相似文献
6.
文本情感分析已经逐渐成为自然语言处理(NLP)的重要内容,并在系统推荐、用户情感信息获取,为政府、企业提供舆情参考等领域越来越占据重要地位。通过文献调研的方式,对情感分析领域的方法进行对比和综述。首先,从时间、方法等维度对情感分析的方法进行文献调研;然后,对情感分析的主要方法、应用场景进行归纳总结和对比;最后,在此基础上分析每种方法的优缺点。根据分析结果可以知道,在面对不同的任务场景,主要有三种情感分析的方法:基于情感字典的情感分析法、基于机器学习的情感分析法和基于深度学习的情感分析法,基于多策略混合的方法成为改进的趋势。文献调研表明,文本情感分析的技术方法还有改进的空间,在电子商务、心理治疗、舆情监控方面有较大市场和发展前景。 相似文献
7.
随着微博用户数量的快速增长,微博中所携带的一些情感和观点对社会的影响越来越大,尤其是一些涉及到公众人身安全的负面情绪,可能会影响到社会的稳定,因此进行微博情感分析意义重大。微博情感分析的内容包括微博语料的获取、微博语料的预处理和情感分析方法等,常用的情感分析方法有基于情感词典的方法、基于机器学习的方法和基于深度学习的方法。随着注意力机制在NLP领域的广泛使用,很多研究者开始将注意力机制融合到深度学习模型中进行情感分析,这使得情感分析的准确率得到了很大的提升。谷歌提出的BERT模型本质上也是基于注意力机制实现的,BERT模型在情感分析领域取得了突破性的进展。 相似文献
8.
传统文本情感分析,通常从文本(可以是文档、段落或句子)整体出发,只能给出一整句话的情感值,无法准确表达用户对不同目标(情感附着物)的情感倾向.因此,本文以深度学习算法为基础进行细粒度情感分析研究.通过分析注意力编码网络的结构和算法原理,提出相应的情感分析框架,以及文本预处理和文本表示方法.该模型在公开数据集SemEval 2014上进行了实验,结果显示基于注意力编码网络的情感分析模型可以获得更高的准确率. 相似文献
9.
10.
提出一种结合ALBERT预训练语言模型与具有多极正交注意力机制的BiSRU弹幕文本情感模型ALBERT-DPCRNN。使用ALBERT预训练语言模型获取文本的动态特征表示,使得句子中同一个词在不同上下文语境中具有不同的词向量表达。结合带有多级正交注意力机制的BiSRU模块来提高模型捕捉弹幕中隐式情感信息的能力。实验结果表明,该模型准确率达到94.5%。 相似文献
11.
中文短文本具有特征稀疏、歧义多、信息不规范、文本情感丰富等特点,现有基于深度学习的中文短文本情感分类模型具有提取文本特征不充分和只注重语义信息而忽视句法信息的问题.针对上述问题提出融合双通道特征的中文短文本情感分类模型.预训练模型得到动态词向量,赋予模型更丰富的语言特征和明确的句法信息.双通道提取动态词向量的文本特征,上侧通道改进了 DPCNN网络,提取文本丰富的长距离依赖关系;下侧通道建立双向长短期记忆网络各时间的字词特征和文本特征的多头自注意力关系,学习更加充分的文本特征,对分类结果较为关键的词汇给予更多的关注.将双通道的特征信息拼接获得最终的文本表示.实验结果表明,该分类模型在Chn-SentiCorp、微博评论和电商评论数据集的准确率分别能够达到96.54%、92.05%和94.3%,对比模型准确率平均值高2.28、2.44和1.01个百分点.融合双通道特征的中文短文本情感分类模型能有效提高文本分类准确率,为中文短文本情感分类提供了新的理论模型. 相似文献
12.
方面级别的文本情感分析旨在针对一个句子中具体的方面单词来判断其情感极性.针对方面单词可能由多个单词组成、平均化所有单词的词向量容易导致语义错误或混乱,不同的文本单词对于方面单词的情感极性判断具有不同的影响力的问题,提出一种融合左右的双边注意力机制的方面级别的文本情感分析模型.首先,设计内部注意力机制来处理方面单词,并根据方面单词和上下文单词设计了双边交互注意力机制,最后将双边交互注意力的处理结果与方面单词处理值三个部分级联起来进行分类.模型在SemEval 2014中两个数据集上进行了实验,分别实现了81.33%和74.22%的准确率,相比较于机器学习和结合注意力机制的各种模型取得了更好的效果. 相似文献
13.
王力 《计算机技术与发展》2022,(1):141-146
随着数字媒体技术的快速发展,弹幕在电子产品评测视频中的使用频率逐年增高,越来越多的用户倾向于通过这种方式了解产品的信息并发表自己的见解.该类弹幕评论除了具有短小、实时性强等特点外,还包含着大量弹幕用户的情感倾向信息.这些信息对于网站和商家都具有重要意义.针对这个问题,对爬取的华为P30手机评测视频共9万2千余条视频弹幕... 相似文献
14.
利用BERT预训练模型的优势;将句法特征与BERT词嵌入模型融入到深度学习网络中;实现细粒度的商品评价分析。提出一种基于深度学习的两阶段细粒度商品评价情感分析模型;利用融合句法特征与BERT词嵌入的BILSTM-CRF注意力机制模型提取用户评论中的商品实体、属性与情感词;运用BILSTM模型对提取的结果进行情感分析。在SemEval-2016 Task 5和COAE Task3商品评价数据集上的特征提取F1值达到88.2%;分别高出BILSTM模型、BILSTM-CRF模型4.8个百分点、2.3个百分点;情感分类精度达到88.5%;比普通的RNN高出8个百分点;比支持向量机、朴素贝叶斯等传统机器学习方法高出15个百分点。通过模型的复杂度分析;进一步证明融合句法特征与BERT词嵌入后的深度学习模型;在细粒度商品评价情感分析上的优势。 相似文献
15.
微博情感分析旨在挖掘网民对特定事件的观点和看法,是网络舆情监测的重要内容.目前的微博情感分析模型一般使用Word2Vector或GloVe等静态词向量方法,不能很好地解决一词多义问题;另外,使用的单一词语层Attention机制未能充分考虑文本层次结构的重要性,对句间关系捕获不足.针对这些问题,提出一种基于BERT和层... 相似文献
16.
属性级情感分类任务旨在判断句子针对给定属性的情感极性, 因其广泛应用而备受关注. 该任务的关键在于识别给定属性相关的上下文描述, 并根据上下文内容判断发文者针对相应属性的情感倾向. 统计发现, 大约30%的评论中并不包含关于给定属性的明确情感描述, 但仍然传达了清晰的情感倾向, 这被称为隐式情感表达. 近年来, 基于注意力机制的神经网络方法在情感分析中得到了成功应用. 但该类方法只能捕捉属性相关的显式情感描述, 而缺乏对隐含情感的有效分析和挖掘, 且往往将属性词与句子上下文分别建模, 使得属性词的表示缺乏上下文语义. 针对以上两个问题, 提出一种交叉融合属性局部和句子全局上下文信息的属性级情感分类方法, 并根据隐式和显式情感表达句子不同的分类难度采用课程学习提高模型的分类性能. 实验表明, 所提方法不仅对显式情感表达句子的属性情感倾向识别准确率高, 而且能够有效学习隐式情感表达句子的情感类别. 相似文献
17.
18.
方面级情感分析是自然语言处理的热门研究方向之一,相比于传统的情感分析技术,基于方面的情感分析是细粒度的,能够判断句子中多个目标的情感倾向,能更加准确地挖掘用户对目标的情感极性。针对以往研究忽略目标单独建模的问题,提出了一种基于双向长短期记忆神经网络(BiLSTM)的交互注意力神经网络模型(Bi-IAN)。该模型通过BiLSTM对目标和上下文分别进行建模,获得目标和上下文的隐藏表示,提取其中的语义信息。接下来利用交互注意模块学习上下文和目标之间的注意力,分别生成目标和上下文的表示,捕捉目标和上下文之内和之间的相关性,并重构评价对象和上下文的表示,最终通过非线性层得到分类结果。在数据集SemEval 2014任务4和Chinese review datasets上的实验训练显示,在正确率和F1-score上,比现有的基准情感分析模型有更好的效果。 相似文献