首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 73 毫秒
1.
为了点对点自动学习脑电信号(Electroencephalogram,EEG)空间与时间维度上的情感相关特征,提高脑电信号情感识别的准确率,基于DEAP数据集中EEG信号的时域、频域特征及其组合特征,提出一种基于卷积神经网络(Convolution Neural Network,CNN)模型的EEG情感特征学习与分类算法。采用包括集成决策树、支持向量机、线性判别分析和贝叶斯线性判别分析算法在内的浅层机器学习模型与CNN深度学习模型对DEAP数据集进行效价和唤醒度两个维度上的情感分类实验。实验结果表明,在效价和唤醒度两个维度上,深度CNN模型在时域和频域组合特征上均取得了目前最好的两类识别性能,在效价维度上比最佳的传统分类器集成决策树模型提高了3.58%,在唤醒度上比集成决策树模型的最好性能提高了3.29%。  相似文献   

2.
针对不同个体的脑电信号差异大且易受到环境因素影响的问题, 结合去基线干扰及脑电通道选择方法, 提出一种基于连续卷积神经网络的情绪分类识别算法. 首先进行基线信号的微分熵(differential entropy, DE)特征的选取研究, 将数据处理为多通道输入后使用连续卷积神经网络进行分类实验, 然后选择最佳电极个数. 实验结果表明, 将实验脑电信号微分熵与被试者实验脑电前一秒的基线信号微分熵的差值映射为二维矩阵后, 在频率维度组合为多通道的形式作为连续卷积神经网络的输入, 在22通道上唤醒度和效价的分类平均准确率为95.63%和95.13%, 接近32通道的平均准确率.  相似文献   

3.
提出一种基于深度卷积联合适应网络(Convolutional neural network-joint adaptation network,CNN-JAN)的脑电信号(Electroencephalogram, EEG)情感识别模型。该模型将迁移学习中联合适应的思想融合到深度卷积网络中,首先采用长方形卷积核提取数据的空间特征,捕捉脑电数据通道间的深层情感相关信息,再将提取的空间特征输入含有联合分布的多核最大均值差异算法(Multi-kernel joint maximum mean discrepancy,MK-JMMD)的适配层进行迁移学习,使用MK-JMMD度量算法解决源域和目标域分布不同的问题。所提方法在SEED数据集上使用微分熵特征和微分尾端性特征分别进行情感分类实验,其中使用微分熵特征被试内跨试验准确率达到84.01%,与对比实验和目前流行的迁移学习方法相比,准确率进一步提高,跨被试实验精度也取得较好的性能,验证了该模型用于EEG信号情感识别任务的有效性。  相似文献   

4.
针对传统机器学习需要人工构建特征及特征质量较低等问题,提出一种新颖的基于一维卷积神经网络(Convolutional Neural Network,CNN)的特征提取方法。采用编码思想,由卷积层和下采样层构成编码器网络提取脑电信号情感特征,随后与特征图一起输入Leaky ReLU激活函数。对于卷积预训练过程,使用交叉熵和正则化项双目标优化损失函数,之后采用随机森林分类器以获得情感分类标签。在国际公开数据集SEED上进行实验,达到94.7%的情感分类准确率,实验结果表明了该方法的有效性和鲁棒性。  相似文献   

5.
针对如何提高脑电信号情感识别的正确率这一问题,在得到的原始脑电信号进行分频带特征提取后,一方面采用支持向量机、K近邻算法、朴素贝叶斯和神经网络算法对小波熵、近似熵、功率谱密度、微分熵,进行训练和分类学习;另一方面,基于四种不同的电极放置方式,对微分熵特征采用支持向量机和经遗传算法参数寻优的支持向量机算法进行训练。结果显示,在12通道条件下能够得到91.99%的总体准确率,最高情感识别准确率已经达到97.59%。研究结果表明,减少电极可以获得较高的情感识别分类结果,并且采用参数寻优后的支持向量机算法能够有效提升准确率。  相似文献   

6.
在当前科学技术快速发展的大背景下,通过应用卷积神经网络原理,能够将表面肌电信号的手势通过一维多通道的方式识别出来,避免在前期采用复杂的方法对表面信号进行预处理以及对信息采用手工提取方法所花费的时间.基于此,以右手为活动手,分析了握拳、向左、向右以及展拳4种手势时的表面肌电信号.将不同手势的肌电信号进行标记,生成信号长度不同的8通道信号训练集和测试集,并借助卷积神经网络的相关原理分析了卷积状态下的采样.借助相关研究后通过卷积神经网络的应用,能够实现卷积神经网络表面肌电信号的高效处理,从而实现对手势信号的识别,且识别率能够满足具体使用需求,因此其在实际工作中应用是有价值的.  相似文献   

7.
希尔伯特-黄变换(HHT)是一种处理脑电信号(EEG)的有效方法,包括经验模态分解(EMD)和Hilbert变换2个部分。但EMD无法分解包含低能量的信号,且在低频区域会产生不良的本征模态函数。为消除EMD的弊端,提出一种小波包变换(WPT)和HHT相结合的EEG处理方法。采用WPT将EEG分解成一组窄带信号,通过HHT得到Hilbert能量谱,求出平均瞬时能量作为EEG特征并封装成特征矩阵。将特征矩阵通过卷积神经网络(CNN)、递归神经网络(RNN)、支持向量机(SVM)组成的混合情感识别模型进行训练与分类。实验结果表明,该方法对高兴、悲伤、平静、恐惧4种情感的平均识别率为86.22%,最优识别率为93.45%。  相似文献   

8.
《微型机与应用》2017,(15):59-61
运用卷积神经网络原理,实现一维多通道的表面肌电信号的手势识别,避免了复杂的前期表面信号的预处理,以及手工特征提取阶段。文中分别采集右手的握拳、向左、向右和展拳4种手势的表面肌电信号。然后将采集的四种不同手势的肌电信号进行切割与标记,生成不同信号长度的八通道信号的训练集与测试集,运用卷积神经网络的原理,分别对其进行卷积、下采样。经过试验研究发现,运用卷积神经网络处理一维多通道表面肌电信号,从而实现手势识别的算法是可行的,并且能够得到较高的识别率。  相似文献   

9.
10.
脑电信号在情感识别中的应用   总被引:1,自引:3,他引:1       下载免费PDF全文
陈曾  刘光远 《计算机工程》2010,36(9):168-170
针对如何在情感识别中有效处理脑电信号和提取有用信息的问题,对实验采集的脑电信号进行小波包分解,通过对相关频段信号的重构,提取出脑电信号中能用于情感状态识别的β波节律,对其在不同情感状态下进行谱分析。仿真实验结果表明,将脑电信号中的β波节律用于情感状态识别是可行的。  相似文献   

11.
在语音情感识别研究中,已有基于深度学习的方法大多没有针对语音时频两域的特征进行建模,且存在网络模型训练时间长、识别准确性不高等问题。语谱图是语音信号转换后具有时频两域的特殊图像,为了充分提取语谱图时频两域的情感特征,提出了一种基于参数迁移和卷积循环神经网络的语音情感识别模型。该模型把语谱图作为网络的输入,引入AlexNet网络模型并迁移其预训练的卷积层权重参数,将卷积神经网络输出的特征图重构后输入LSTM(Long Short-Term Memory)网络进行训练。实验结果表明,所提方法加快了网络训练的速度,并提高了情感识别的准确率。  相似文献   

12.
传统的矩阵因子分解模型不能有效提取用户和物品特征,而基于深度学习模型可以很好地提取特征信息。当前,主流的基于深度学习推荐算法只是单一地将神经网络的输出或物品特征与用户特征乘积的形式来做推荐预测,不能充分挖掘用户和物品之间的关系。基于此,本文提出一种基于文本卷积神经网络与带偏置项的奇异值分解(BiasSVD)结合的推荐算法,利用文本卷积神经网络(TextCNN)来充分提取用户和物品的特征信息,然后用奇异值分解方法来做推荐,深层次理解文档上下文信息,进一步提高推荐的准确性。将该算法在MovieLens的2个真实数据集上做广泛的评估分析,推荐的准确度要明显优于ConvMF算法及主流深度学习推荐算法。  相似文献   

13.
针对实时人脸表情识别模型训练慢、识别速度慢的问题,提出一种OpenCV和卷积神经网络结合进行实时表情识别的方法.人脸表情是多个局部区域特征的集合,而卷积神经网络提取出的特征能更多地关注局部,因此采取卷积神经网络的方式进行模型的训练.所提网络在全连接层中加入了Dropout,能有效预防过拟合现象的发生,并且提升模型泛化能...  相似文献   

14.
15.
陈景霞  郝为  张鹏伟  闵重丹  李玥辰 《软件学报》2021,32(12):3869-3883
提出一种脑电图(electroencephalograph,简称EEG)数据表示方法,将一维链式EEG向量序列转换成二维网状矩阵序列,使矩阵结构与EEG电极位置的脑区分布相对应,以此来更好地表示物理上多个相邻电极EEG信号之间的空间相关性.再应用滑动窗将二维矩阵序列分成一个个等长的时间片段,作为新的融合了EEG时空相关性的数据表示.还提出了级联卷积-循环神经网络(CASC_CNN_LSTM)与级联卷积-卷积神经网络(CASC_CNN_CNN)这两种混合深度学习模型,二者都通过CNN卷积神经网络从转换的二维网状EEG数据表示中捕获物理上相邻脑电信号之间的空间相关性,而前者通过LSTM循环神经网络学习EEG数据流在时序上的依赖关系,后者则通过CNN卷积神经网络挖掘局部时间与空间更深层的相关判别性特征,从而精确识别脑电信号中包含的情感类别.在大规模脑电数据集DEAP上进行被试内效价维度上两类情感分类实验,结果显示,所提出的CASC_CNN_LSTM和CASC_CNN_CNN网络在二维网状EEG时空特征上的平均分类准确率分别达到93.15%和92.37%,均高于基准模型和现有最新方法的性能,表明该模型有效提高了EEG情感识别的准确率和鲁棒性,可以有效地应用到基于EEG的情感分类与识别相关应用中.  相似文献   

16.
针对脑电信号(electroencephalogram,EEG)情绪识别中数据稀缺及由此导致的情感分类精度不高的问题,提出了一个引入自注意力机制的条件Wasserstein生成对抗网络(SA-cWGAN),通过自注意力模块从训练数据学习长时上下文相关的全局特征,采用Wasserstein距离和梯度惩罚的Lipschitz约束对网络的损失函数进行优化,进而生成高质量的EEG数据对原有训练集进行增强。所提方法分别在DEAP和SEED数据集上进行了大量的二分类和三分类对比实验,生成了与EEG训练数据分布接近的微分熵(DE)和功率谱密度(PSD)特征,以此来增强EEG训练数据集,采用SVM分类器对增强后的EEG特征进行情绪分类。实验结果表明,在DEAP数据集上的唤醒度和效价维度下,增强后的DE、PSD特征较原有DE、PSD特征二分类准确率分别提高了16.63、17.55个百分点和6.48、8.34个百分点;在SEED数据集下,三分类准确率分别提高了4.64、5.18个百分点,证明所提方法生成的特征具有良好的鲁棒性,也表明通过对GAN网络引入自注意力机制生成的特征增强原有训练数据集能够有效提高E...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号