共查询到17条相似文献,搜索用时 39 毫秒
1.
随着移动互联网应用的不断深入,产生了大量个体数据,采集分布在不同终端上的数据进行聚类可以发现人群行为模式,支撑应用服务的深入开展.然而这些数据往往包含个体敏感信息,在缺少可信数据采集者的情况下,直接采集数据进行聚类存在泄露个体数据隐私的风险.近年来,本地化差分隐私(Local Differential Privacy,LDP)以其严谨的数学理论基础得到隐私保护领域研究者的持续关注.现有基于LDP的聚类研究多数采用基于划分的聚类方法,存在仅适用凸状分布数据以及聚类质量损失较大问题.针对该问题,聚焦网格聚类,提出基于LDP的隐私保护网格聚类方法.首先,设计网格划分评估指标,通过调节网格划分粒度调控网格密度估算误差和簇边缘信息损失,指导网格结构选取;然后,在服务器与终端间构建循环反馈机制,利用数据分布信息迭代优化扰动粒度,降低差分噪声注入量,在保护终端数据隐私安全的前提下,提升网格密度估算精度;最后,在服务器端,提出基于网格结构的自适应网格聚合方法,提升隐私保护聚类质量.理论分析和实验结果表明,所提方法在兼顾各终端个体数据隐私的同时,对不同分布数据有良好的聚类效果. 相似文献
2.
3.
大数据时代的数据挖掘技术在研究和应用等领域取得了较大发展,但大量敏感信息披露给用户带来了众多威胁和损失。因此,在聚类分析过程中如何保护数据隐私成为数据挖掘和数据隐私保护领域的热点问题。传统差分隐私保护k-means算法对其初始中心点的选择较为敏感,而且在聚簇个数k值的选择上存在一定的盲目性,降低了聚类结果的可用性。为了进一步提高差分隐私k-means聚类方法聚类结果的可用性,研究并提出一种新的基于差分隐私的DPk-means-up聚类算法,同时进行了理论分析和比较实验。理论分析表明,该算法满足ε-差分隐私,可适用于不同规模和不同维度的数据集。此外,实验结果表明,在相同隐私保护级别下,与其他差分隐私k-means聚类方法相比,所提算法有效提高了聚类的可用性。 相似文献
4.
大数据时代信息技术不断发展,个人信息的隐私问题越来越受到关注,如何在数据发布和分析的同时保证其中的个人敏感信息不被泄露是当前面临的重大挑战.中心化差分隐私保护技术建立在可信第三方数据收集者的假设基础上,然而该假设在现实中不一定成立.基于此提出的本地化差分隐私作为一种新的隐私保护模型,具有强隐私保护性,不仅可以抵御具有任意背景知识的攻击者,而且能够防止来自不可信第三方的隐私攻击,对敏感信息提供了更全面的保护.介绍了本地化差分隐私的原理与特性,总结和归纳了该技术的当前研究工作,重点阐述了该技术的研究热点:本地化差分隐私下的频数统计、均值统计以及满足本地化差分隐私的扰动机制设计.在对已有技术深入对比分析的基础上,指出了本地化差分隐私保护技术的未来研究挑战. 相似文献
5.
针对传统差分隐私保护的谱聚类算法存在聚类效果不理想的不足,提出一种面向差分隐私保护的自适应谱聚类优化新算法。采用互邻高斯核函数得到稀疏相似度矩阵,分析高维数据集的数据特征与聚类簇数的关系解决降维幅度和聚类簇数的不确定性;引入中间信息向量和中间性的概念来克服初始簇中心选取的盲目性;根据多维高斯分布离群点检验后的结果采用插补法解决离群点问题。仿真实验结果表明,该算法能够有效克服传统方法的不足,且在同一数据集相同隐私保护参数下,可以在保证数据隐私安全性的同时改善聚类效率并显著提高聚类可用性。 相似文献
6.
7.
8.
谢云轩 《计算技术与自动化》2022,(3):64-70
软大间隔聚类(Soft Large Margin Clustering)已被证明比其他诸如K-Means等诸多聚类算法具有更优的聚类性能与可解释性。然而作为单机聚类算法,仍有可扩展性的瓶颈,因此有人将其进行分布式改造。然而在进行分布式运算时,在迭代过程中存在节点之间相互通信的过程。如果某些节点存在隐私数据,那么数据集中的敏感信息在通信过程中就可能泄漏。为此,本文将分布式软大间隔聚类算法(Distributed Sparse SLMC)结合隐私保护,通过插入高斯噪声来提供零集中差分隐私(Zero Concentrated Differential Privacy),发展出差分隐私软大间隔聚类算法。最后通过理论证明其隐私保护效用,通过实验验证其具有与非联邦算法相近的收敛速度与聚类性能。 相似文献
9.
针对现有隐私保护k-means聚类方案迭代效率不高,中心化差分隐私保护k-means聚类方案中服务器会遭受攻击,以及本地化差分隐私保护k-means聚类方案中服务器会返回错误聚类结果的问题,提出了一种基于区块链的多方隐私保护k-means聚类方案(M-PPkCS/B)。利用本地化差分隐私技术的优势及区块链公开透明、不可篡改的特性,首先,设计一种多方k-means聚类中心初始化算法(M-kCCIA),在保护用户隐私的同时,提高聚类的迭代效率,并确保用户联合产生初始聚类中心的正确性;然后,设计一种基于区块链的隐私保护k-means聚类算法(Bc-PpkCA),并构建聚类中心更新算法的智能合约来在区块链上迭代更新聚类中心,从而保证各个用户都能得到正确的聚类结果。在数据集HTRU2和Abalone上进行实验的结果表明,在确保各个用户得到正确聚类结果的同时,两个数据集的准确率分别能达到97.53%和96.19%,M-kCCIA的平均迭代次数与随机化初始聚类中心算法RS的平均迭代次数相比,在两个数据集上分别减少了5.68次和2.75次。 相似文献
10.
针对差分隐私保护下单一聚类算法准确性和安全性不足的问题,提出了一种基于差分隐私保护的Stacking集成聚类算法。使用Stacking集成多种异质聚类算法,将K-means聚类、Birch层次聚类、谱聚类和混合高斯聚类作为初级聚类算法,结合轮廓系数对初级聚类算法产生的聚类结果加权并入原始数据,将K-means算法作为次级聚类算法对扩展后的数据集进行聚类分析。其中,针对原始数据和初级聚类算法的聚类结果分别提出自适应的ε函数确定隐私预算,为不同敏感度的数据分配不同程度的Laplace噪声。理论分析和实验结果均表明,与单一聚类算法相比,该算法满足ε-差分隐私保护的同时有效提高了聚类准确性,实现了隐私保护与数据可用性的高度平衡。 相似文献
11.
事务数据常见于各种应用场景中,如购物记录、页面浏览历史等.为了提供更好的服务,服务提供商收集用户数据并进行分析,但收集事务数据会泄露用户的隐私信息.为了解决上述问题,基于压缩的本地差分隐私模型,提出一种事务数据收集方法.首先,定义了一种新的候选项集分值函数;其次,基于该函数,将候选项集的样本空间划分为多个子空间;然后,随机选择其中一个子空间,基于该子空间随机生成事务数据并发送给不可信的数据收集者;最后,考虑到隐私参数的设置问题,基于最大后验置信度攻击模型设计启发式隐私参数设置策略.理论分析表明,该方法能够同时保护事务数据的长度与内容,满足压缩的本地差分隐私要求.实验结果表明,与目前最优的工作相比,所收集的数据具有更高的效用性,隐私参数设置更具有语义性. 相似文献
12.
通过数据概化,在多维属性的属性值概念分层上构造少量的具有抽象语义的元组来替换大量具有详细语义的原始元组,从而汇总数据表,这称作表语义汇总。给定原始数据表及其多维属性的属性值的概念分层,表语义汇总的目标是产生规定压缩率且保留尽可能多的语义信息的汇总表。现有算法采用在概化元组集合中寻找最佳概化元组组合的策略将其转换成Set-Covering问题来解决,尽管采取了多种优化策略(如预处理、分级处理)来提高效率,但仍存在转换开销大、算法框架复杂且不易扩展到高维属性等缺点。通过定义多维属性层次结构的度量空间将该问题转换为多维层次空间聚类问题并引入dewey编码来提高转换效率,提出了基于快速收敛的层次凝聚和基于层次空间分辨率调整的两种聚类算法来高效地建立语义汇总表。经真实数据集上的实验表明,新算法在执行效率和汇总质量上都优于现有方法。 相似文献
13.
差分隐私K-means算法(Differential Privacy K-means Algorithm,DP K-means)作为一种基于差分隐私技术的隐私保护数据挖掘(Privacy Preserving Data Mining,PPDM)模型,因简单高效且可保障数据的隐私而备受研究者的关注。文中首先阐述了差分隐私K-means算法的原理、隐私攻击模型,以分析算法的不足。然后从数据预处理、隐私预算分配、聚簇划分等3个角度讨论分析DP K-means算法改进研究的优缺点,并对研究中的相关数据集和通用评价指标进行了总结。最后指出DP K-means算法改进研究中亟待解决的挑战性问题,并展望了DP K-means算法的未来发展趋势。 相似文献
14.
移动设备收集用户的地理位置数据用以提供个性化服务,同时也会产生数据泄露的潜在风险。现有地理位置差分隐私保护机制对于不同地理位置隐私保护级别等同对待,效用优化本地差分隐私(ULDP)考虑了对数据加以不同级别的隐私保护,但仅适用于类别型数据的频率估计,在地理位置隐私保护方面没有应用。考虑ULDP机制下的地理位置保护方案,将平方机制进行改造,提出效用优化的平方机制(USM)。该机制对于敏感地理位置满足本地差分隐私,对于非敏感地理位置不作安全性要求以提高整体效用。选取2种不同的真实地理位置数据集,在隐私预算相同的条件下将USM与平方机制进行对比实验,理论分析和实验结果表明USM在效用方面有显著提升。本文同时还展望了本机制进一步优化的可能方向。 相似文献
15.
16.
随着大数据时代的到来,挖掘大数据的潜在价值越来越受到学术界和工业界的关注。但与此同时,由于互联网安全事件频发,用户越来越多地关注个人隐私数据的泄露问题,用户数据的安全问题成为阻碍大数据分析的首要问题之一。关于用户数据的安全性问题,现有研究更多地关注访问控制、密文检索和结果验证,虽然可以保证用户数据本身的安全性,但是无法挖掘出所保护数据的潜在价值。如何既能保护用户的数据安全又能挖掘数据的潜在价值,是亟需解决的关键问题之一。文中提出了一种基于差分隐私保护的关联规则挖掘方法,数据拥有者使用拉普拉斯机制和指数机制在数据发布的过程中对用户数据进行保护,数据分析者在差分隐私的FP-tree上进行关联规则挖掘。其中的安全性假设是:攻击者即使掌握了除攻击目标以外的所有元组数据信息的背景知识,仍旧无法获得攻击目标的信息,因此具有极高的安全性。所提方法是兼顾安全性、性能和准确性,以牺牲部分精确率为代价,大幅增加了用户数据的安全性和处理性能。实验结果表明,所提方法的精确性损失在可接受的范围内,性能优于已有算法的性能。 相似文献
17.
近年来,隐私保护事务数据发布得到了研究者的广泛关注.事务数据的稀疏性导致个体隐私保护与数据效用性之间很难达到平衡.目前已有的方法大多是基于分组的匿名模型,但该类模型依赖于攻击者背景知识,且发布的数据无法满足事务数据分析任务的需要.针对事务数据隐私保护发布的数据安全性与效用性不足,基于差分隐私与压缩感知理论,提出一种有效的面向应用的事务数据发布策略(transaction data publish strategy, TDPS).首先构建事务数据库的完整Trie项集树,然后基于压缩感知技术对项集树添加满足差分隐私约束的噪音得到含噪Trie项集树,最后在含噪树上进行频繁项集挖掘任务.实验结果表明, TDPS不仅能很好地保护隐私,而且能有效保持数据效用性,满足事务数据分析任务对数据质量的要求. 相似文献