首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
胡聿文 《计算机科学》2021,48(z1):151-157
股票预测研究一直是困扰投资者的难题.以往,投资者采用传统分析方法如K线图、十字线等方法来预测股票走势,但随着科技的进步和经济市场的发展,以及经济政策的变动,股票的价格走势受到越来越多方面因素的干扰,仅靠传统的分析方法远远不能解析出股票价格波动中隐藏着的重要信息,因此预测精度大打折扣.为了提高股票价格的预测精度,提出一种基于PCA和LASSO的LSTM神经网络股票价格预测模型.采用2015-2019年平安银行(000001)五大类技术指标数据,通过PCA和LASSO方法对五大类技术分析指标进行降维筛选,再使用LSTM模型进行平安银行股票收盘价预测,对比前两种模型和单纯使用LSTM模型的预测效果稳定性及准确性.结果表明,相比于LASSO-LSTM模型和LSTM模型,PCA-LSTM模型能够大幅削减数据冗余,并且获得了更优异的预测精度.  相似文献   

2.
3.
该文针对股票价格预测课题分析了循环神经网络在这一领域的可行性.通过结合结合长短期记忆,基于Tensorflow平台搭建了多层LSTM模型对上证综指进行了短期预测,通过不断优化得到了非常好的预测准确率.  相似文献   

4.
道路交通事故是道路交通安全水平的具体体现,为使预测数据更科学地为交通管理系统提供决策。提出建立基于LSTM(Long Short-Term Memory)神经网络的交通事故模型,训练交通事故相关的数据,对交通安全水平的指标进行预测。经过与传统回归模型和传统神经网络模型进行实验对比,实验显示LSTM拟合效果最佳,另外LSTM模型对同一趋势上的预测效果有明显优势。通过使用LSTM模型捕获数据中存在的时序依赖关系,能够更准确地对交通事故安全水平进行预测,使交通管理部门制定更加科学准确的决策。  相似文献   

5.
提高水库水位的预测精度对水库的水资源调度、防洪减灾、安全管理等方面具有重大意义.但水库水位的变化受到众多因素影响,特别是近年来异常气候的增多,水库水位的快速变化也有增多的趋势,水库水位的变化与各因素之间并非简单的线性关系.本文利用长短时记忆神经网络(LSTM)在处理长时间序列问题上的优势和Attention机制能够对不...  相似文献   

6.
基于正则化LSTM模型的股票指数预测   总被引:1,自引:0,他引:1  
针对金融时间序列预测问题,提出正则化长短期记忆神经网络LSTM(Long Short-Term Memory neural network)模型。LSTM模型通过其独特的单元结构,能够深入挖掘出时间序列中的固有规律;采用正则化方法修改LSTM模型的目标函数,优化网络结构,从而选出泛化能力较强的弹性网正则化LSTM模型。将该模型应用于道琼斯指数预测,实验对比表明,该方法计算出的均方根误差最小,预测拟合程度最高。  相似文献   

7.
精准的销售额预测对于商业运营有非常大的指导意义,可以指导运营后台提前进行合理的资源配置,帮助管理者制定合理的目标。零售商店日销售额预测指从商店已有日销售额的数据资料中总结出商品销售额的变化规律,并根据该规律动态预测未来一段时间内的日销售额。预测目的是通过增加企业销量,从而完善生产模式,使企业获利。目前,现有的关于商品销售额预测方法的精度大都不高,低于85%。因此,提出了一种基于TensorFlow的LSTM模型的零售商店日销售额预测方法,能够提高预测未来一周的日销售额精度。实验结果显示,预测精度达到90%;同时得到LSTM模型的MAPE为0.031932,MAE为168.3207,明显高于现有模型的预测结果。  相似文献   

8.
研究比较差分自回归移动平均模型(Autoregressive Integrated Moving Average model,简称ARIMA)与长短期记忆神经网络(LongShortTermMemory,LSTM)模型在建筑安全事故预测中的效果。采用2012—2018年全国建筑安全事故快报数据训练ARIMA及LSTM模型,并对全国每年、每月发生的建筑安全事故次数进行预测,使用RMSE和MAE作为评价指标对比两种模型的预测准确率。ARIMA(1,1,0)模型和LSTM模型的RMSE、MAE值分别为8.1318、6.5911和16.4341、14.5534。结果表明,ARIMA模型比LSTM模型更适于预测建筑安全事故发生次数。  相似文献   

9.
丁文绢 《工业控制计算机》2021,34(7):109-112,116
股票市场是金融市场的重要组成部分,与经济的发展密切相关.对于股票价格的各种分析预测问题伴随着金融市场的建立一直存在,为此使用上证A股50的历史交易数据作为研究对象,对其进行收盘价格趋势预测分析.通过ARIMA模型、LSTM模型对股价走势进行预测.经过实证研究,结合误差指标和交易绩效等展示模型预测精度和预测效果,最后得出...  相似文献   

10.
为了更好地对股票价格进行预测,进而为股民提供合理化的建议,提出了一种在结合长短期记忆网络(LSTM)和卷积神经网络(CNN)的基础上引入注意力机制的股票预测混合模型(LSTM-CNN-CBAM),该模型采用的是端到端的网络结构,使用LSTM来提取数据中的时序特征,利用CNN挖掘数据中的深层特征,通过在网络结构中加入注意...  相似文献   

11.
股价预测一直都是股票投资者重点关注和重点研究的方向,针对股价具有高度非线性、高噪声、动态性等问题,提出一种基于自组织特征映射(SOM)神经网络和长短期记忆网络(LSTM)共同应用的股价预测方法。第一步聚类,使用python语言实现改进的自组织特征映射神经网络算法,将187支股票分成三类,三类股票以盈利能力大小进行聚类,并且求出每一类所包含的股票代码;第二步预测,基于Pytorch深度学习框架构造长短期记忆网络模型,分别对每一类中随机的3支股票进行股价预测,再通过均方误差和决定系数对预测结果进行评价。结果表明,在使用相同的预测模型对不同盈利能力的股票做股价预测时,盈利能力越大的股票,预测精度越高。此研究可以为投资者筛选出盈利能力更大的股票,并且在提高股价预测精度上也具有一定的贡献。  相似文献   

12.
股价波动是一个高度复杂的非线性系统,其股票的调整不是按照均匀的时间过程推进,具有自身的推进过程。结合LSTM(Long Short-Term Memory)递归神经网络的特性和股票市场的特点,对数据进行插值、小波降噪、归一化等预处理操作后,推送到搭建的不同LSTM层数与相同层数下不同隐藏神经元个数的LSTM网络模型中进行训练与测试。对比评价指标与预测效果找到适宜的LSTM层数与隐藏神经元个数,提高了预测准确率约30%。测试结果表明,该模型计算复杂度小,预测准确率有所提高,不仅能在股票投资前对预测股票走势提供有益的参考,还能帮助投资者在对实际股价有了进一步的认知后构建合适的股票投资策略。  相似文献   

13.
聚焦于具有极度非线性、非平稳性等特征的比特币价格预测问题,在长短时记忆网络(Long Short-Term Memory,LSTM)基础上构建了4个混合预测模型,利用小波变换(Wavelet Transform,WT)以及自适应噪声的完备经验模态分解(Com-plete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)对序列进行分解与重构,并引入了样本熵(Sample Entropy,SE)进行重构优化,使用LSTM对重构以后的子序列分别进行预测,最后将其叠加得到最终的预测结果.在预测结果的评判上,使用均方根误、平均绝对百分误以及希尔不等系数来进行拟合评价,并将结果与单一LSTM模型进行比较.研究发现混合模型的预测准确性均优于单一模型,且样本熵的引入可有效降低预测误差.  相似文献   

14.
为了更好地研究股指预测问题,提出了基于特征选取与LSTM模型的股指预测方法,该方法从优化特征参数选取角度对模型预测能力进行提升,包含全面选取特征参数、应用系统聚类法进行特征分类、应用主成分分析对分类特征进行降维三个步骤。在实证论证中,应用LSTM模型对纳斯达克股票指数数据和标普500指数数据进行预测,实验结果表明所提出的方法计算量小,预测结果在速度和准确度两方面分析均得到显著提升。  相似文献   

15.
《信息与电脑》2019,(23):30-32
笔者旨在构建机器学习优化股票多因子模型,用以处理A股市场风格切换和选股问题来最终获得超额收益,首先构建因子分析模型来筛选出7个最优因子,进而构建基于机器学习的随机森林模型,通过随机森林回测某段时间的股票波动情况。该模型分别从因子表达、机器学习算法两个角度对A股市场股票的波动规律进行研究,获取最大回撤的超额收益。笔者使用公开的2016年1月1日至2018年9月30日我国A股市场的数据对算法性能进行评估。实验结果显示回测的正确率为83%,收益的平均利率约为1.57%。  相似文献   

16.
介绍了神经网络的基本概念,建立BP神经网络模型,以某个股实际收盘价为原始数据样本,对网络进行训练后,对股票价格进行了短期预测,并计算出预测值和实际值的误差.通过实验发现该模型收敛速度快,预测精度高.  相似文献   

17.
为了有效预测交通事故,提出一种基于改进粒子群算法优化支持向量回归机的预测模型。改进粒子群算法利用网格搜索对全局最优粒子的邻域进行精细搜索,结合粒子群算法较快的收敛速度和网格搜索较强局部搜索能力的优点,提高了支持向量回归机相关参数的优化精度,进而改善了交通事故预测模型的预测性能。仿真结果表明,基于改进粒子群算法优化支持向量回归机的交通事故预测模型达到了较快的学习速度和较高的预测精度,具有良好的工程应用性。   相似文献   

18.
利用局部线性嵌入降维方法(LLE)提取有效因子,并将这些有效因子组成的特征空间矩阵作为优化的RBF神经网络的输入矩阵,从而建立网络模型.以此对广西5月区域平均日降水量进行预报,结果表明,该模型具有较好的收敛效果和泛化能力,在预报性能上明显优于同期的T213降水预报,具有一定的普遍适用性.  相似文献   

19.
针对利用交通流量和平均车速等交通要素分析交通拥堵,无法实时分析出用户车辆当前所处道路拥堵的问题,提出一种基于LSTM网络的道路拥堵分析模型.首先采用车辆检测算法判断出当前用户视角中前方车辆位置,并利用位置信息估测车距;然后结合车距信息、车辆与车道位置关系,生成车距信息矩阵;最后通过训练好的神经网络分类模型,以车距信息矩...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号