首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
针对通用目标检测算法在检测小目标时检测精度低的问题,提出一种基于多尺度感受野融合的小目标检测算法S-RetinaNet。该算法采用残差神经网络(residual neural network,ResNet)提取出图像的特征,利用递归特征金字塔网络(recursive feature pyramid network,RFPN)对特征进行融合,通过多尺度感受野融合模块(multiscale receptive field fusion,MRFF)分别处理RFPN的三个输出,提升对小目标的检测能力。实验表明,相比改进前的RetinaNet算法,S-RetinaNet算法在PASCAL VOC数据集上的均值平均精度(mean average precision,mAP)和MS COCO数据集上的平均精度(average precision,AP)分别提高了2.3和1.6个百分点,其中小目标检测精度(average precision small,APS)更为显著,提升了2.7个百分点。  相似文献   

2.
基于特征金字塔网络的目标检测算法没有充分考虑不同目标间的尺度差异以及跨层特征融合过程中高频信息损失问题,使网络无法充分融合全局多尺度信息,导致检测效果不佳.针对这些问题,提出了尺度增强特征金字塔网络.该方法对特征金字塔网络的侧向连接和跨层特征融合方式进行了改进,设计具有动态感受野的多尺度卷积组作为侧向连接来充分提取每一个目标的特征信息,引入基于注意力机制的高频信息增强模块来促进高层特征与底层特征融合.基于MS COCO数据集的实验结果表明,该方法能有效提高各尺度目标的检测精度,整体性能优于现有方法.  相似文献   

3.
针对SSD当前存在的小目标漏检以及误检问题,结合反卷积与特征融合思想,提出hgSSD模型。将原SSD特征层反卷积后与较浅层特征结合,实现复杂场景下小目标行人检测。为了保留浅层网络特征,提高算法实时性,节省计算资源,hgSSD模型基础网络使用VGG16,而非更深层的ResNet101。为了加强对小目标的检测,将VGG16中的Conv3_3改进为特征层加入训练。融合后的网络相对于SSD较为复杂,但基本保证实时性,且成功检测到大部分SSD网络漏检的小目标,检测精度相比于SSD模型也有提升。在选择框置信度得分阈值为0.3的情况下,基本检测到SSD漏检小目标。在VOC2007+2012中相对于SSD行人检测的Average Precision值从0.765提升为0.83。  相似文献   

4.
在目标检测任务中不同目标间尺寸差异较大,导致多尺寸目标难以被有效检测.基于YOLOv3提出BR-YOLOv3目标检测网络.利用空洞卷积提升网络层感受野尺寸的特性,使用不同数量、尺寸、膨胀率的卷积构建多层并行的空洞感受野模块.通过双向特征金字塔结构实现浅深层特征的双向融合,提升浅层预测分支分类、深层预测分支目标定位能力....  相似文献   

5.
当前小目标检测算法的实现方式主要是设计各种特征融合模块,检测效果和模型复杂度很难达到平衡.此外,与常规目标相比,小目标信息量少,特征难以提取.为了克服这两个问题,采用了一种不降维局部跨通道交互策略的通道注意力模块,实现通道间的信息关联,通过对每个通道的特征进行权重分配来学习不同通道间特征的相关性.同时,加入改进的特征融合模块,使网络可以使用低层和高层的特征进行多尺度目标检测,提升了以低层特征为主要检测依据的小目标检测精度.骨干网络采用特征表达能力强和速度快的ResNet,在获取更多网络特征的同时保证了网络的收敛性.损失函数采用Focal Loss,减少易分类样本的权重,使得模型在训练时更关注于难分类样本的分类.该算法框架在VOC数据集上的mAP为82.7%,在航拍数据集上的mAP为86.8%.  相似文献   

6.
现有依赖CNN的目标检测算法常采用特征融合的建模方式来丰富特征表达,虽然该方法一定程度上能有效改善多尺度目标检测,但是在针对复杂场景进行检测时却没有显著的提升。这主要受限于三个问题的影响:长路径特征融合造成的特征间相关性损失;仅设计了单方向的融合连接,忽略了反方向的语义信息弥补;忽略了有效感受野(effective receptive field,ERF)在多尺度检测中的重要性。针对这三点分别设计了二次融合结构(double fusion structure,DFS)、多分支融合模块(multi branch fusion module,MBFM)和感受野增强模块(receptive field enhance module,RFEM)。该方法利用DFS缩短特征层级间的相对路径,然后通过MBFM来同时弥补上层和下层的语义信息缺失,并使用RFEM建模特征通道,增大ERF区域。最终模型在PASCAL VOC 2007测试数据集上达到了85.4%的平均精度均值(mean average precision,mAP),与依赖传统建模方式的检测算法相比,提出的方法提高了2.6%。  相似文献   

7.
陈慧  彭力 《计算机科学》2023,(12):166-174
显著性目标检测旨在寻找图像中的视觉显著区域。现有的显著性目标检测方法已经展现出强大的优势,但依然在尺度感知和边界预测方面具有局限性。首先,各类场景中的显著目标存在诸多尺度,使算法难以适应不同尺度变化。其次,显著目标往往具有复杂的轮廓,这使边界像素点的检测变得更为困难。针对以上问题,文中提出了基于特征融合与边界修正的显著性目标检测网络,该网络基于特征金字塔,提取了不同层次显著特征。首先针对目标的尺度多样性设计了由多尺度特征解码模块组成的特征融合解码器,通过逐层融合相邻层特征,提高了网络对目标尺度的感知能力。同时设计了边界修正模块学习显著目标的轮廓特征,以生成边界清晰的高质量显著图。在5个常用显著性目标检测数据集上进行实验,结果表明所提算法在平均绝对误差、F指标和S指标3项定量指标上均能取得较优的结果。  相似文献   

8.
针对局部立体匹配方法存在的匹配窗口大小选择困难、弱纹理或高光区域立体匹配精度较低等问题,文中结合卷积神经网络(CNN)与图像金字塔方法,提出多尺度融合的立体匹配算法.训练CNN,用于自动学习待匹配图像对的图像特征,完成匹配代价计算.构建图像金字塔,对待匹配图像对进行多尺度表达.构建弱纹理区域模板,将各层待匹配图像划分为弱纹理区域和丰富纹理区域,将弱纹理区域图像变换成小尺度图像进行匹配度计算,降低弱纹理图像的误匹配率.在变换回大尺度图像时与丰富纹理区域匹配结果融合,保持匹配精度.在KITTI数据集上的实验表明,文中算法具有较好的图像匹配效果.  相似文献   

9.
目的 自然场景图像中,特征提取的质量好坏是决定目标检测性能高低的关键因素。大多数检测算法都是利用卷积神经网络(CNN)强大的学习能力来获得目标的先验知识,并根据这些知识进行目标检测。卷积神经网络的低层次特征缺乏特征的代表性,而高层次的特征则对小尺度目标的监测能力弱。方法 利用原始SSD(single shot multiBox detector)网络提取特征图,通过1×1卷积层将提取的特征图统一为256维;通过反卷积操作增加自顶向下特征图的空间分辨率;通过对应元素相加的操作,将两个方向的特征图进行融合。将融合后的特征图采用3×3的卷积核进行卷积操作,减小特征图融合后的混叠效应。根据以上步骤构建具有较强语义信息的特征图,同时保留原有特征图的细节信息;对预测框进行聚合,利用非极大抑制(NMS)实现最终的检测效果。结果 在PASCAL VOC 2007和PASCAL VOC 2012数据集上进行实验测试,该模型的mAP(mean average precision)为78.9%和76.7%,相对于经典的SSD算法,分别提高了1.4%和0.9%;此外,本文方法在检测小尺度目标时相较于经典SSD模型mAP提升了8.3%。结论 提出了一种多尺度特征图融合的目标检测算法,以自顶向下的方式扩展了语义信息,构造了高强度语义特征图用于实现精确目标检测。  相似文献   

10.
SSD (Single Shot multi-box Detector)算法是在不同层的特征图上,进行多尺度对象的检测,具有速度快和精度高的特点.但是,传统SSD算法的特征金字塔检测方法很难融合不同尺度的特征,并且由于底层的卷积神经网络层具有较弱的语义信息,也不利于小物体的识别,因此本论文提出了以SSD算法的网络结构为基础的一种新颖的目标检测算法RFSSD,该算法将不同层及不同尺度的特征图以轻量级的方式相融合,下采样层生成新的特征图,通过引入感受野模块,提高网络的特征提取能力,增强特征的表征能力和鲁棒性.和传统SSD算法相比,本文算法在精度上有明显提升,同时充分保证了目标检测的实时性.实验结果表明,在PASCAL VOC测试集上测试,准确率为80.2%,检测速度为44.5 FPS.  相似文献   

11.
行人在众多场景中都存在多尺度变化问题,严重影响检测器的精度,为此设计卷积特征重建和通道注意力两种模块来增强对多尺度行人的检测效果.以原始输入的多尺度特征为基础融合重建多个特征金字塔,然后融合多个特征金字塔中的相同尺度特征,并学习每层特征的通道注意力权值来增加有效通道层权重,由此得到的特征才用于最后的检测.将这两种模块集...  相似文献   

12.
为了提高单阶段目标检测算法对小目标和重叠目标的检测性能,使其能够应用到自动驾驶场景中,提出一种基于SSD(Single Shot Multibox Detector)的深度特征融合算法DFSSD(Deep Fusion based Single Shot Multibox Detector)。DFSSD主要从两个角度对SSD算法进行改进:一方面提出一种高效的特征融合方式,在不引入大量参数和过多计算量的情况下,增强了模型的特征表达能力和对困难小目标的检测能力;另一方面引入一种带噪声的训练方式,即在训练时,随机地将样本中未标记的困难正例目标(不易分辨的正例目标)加入训练,以提高算法对复杂背景的抗干扰能力,降低对困难小目标的误检率。在PASCAL VOC2007测试集上,DFSSD300比SSD300的mAP(mean Average Precision)提升了3.7个百分点,在KITTI数据集上,Car类困难目标的AP(Average Precision)值提升了5个百分点,同时与SSD300具有相当的检测速率。  相似文献   

13.
在通用的目标检测算法中,目标多变的尺度和特征融合利用一直是限制目标检测任务的难题.针对上述问题,首先文中提出了多路径特征融合模块,模块采用跨尺度跨路径特征融合的方法,强化输入输出特征之间的联系,缓解了特征信息在传递时的稀释问题.同时,文中通过改进注意力模型提出了尺度感知模块,该模块能根据目标的尺度自行地选择感受野大小,从而使模型易于识别多尺度目标.将尺度感知模块嵌入到多路径特征融合模块中,使模型的特征提取和利用能力均得到提升.经实验验证,文中提出的算法在数据集PASCAL VOC和MS COCO上的平均检测精度分别达到了82.2%和38.0%,相比基线FPN Faster RCNN分别提升了1.3%和0.6%,其中对小尺度目标的检测效果提升最为显著.  相似文献   

14.
伪装目标检测是一项在复杂场景中定位和识别伪装目标的任务. 目前基于深度神经网络的方法已初步运用, 但在复杂场景下遇到干扰时, 许多方法无法充分利用目标的多级特征来提取丰富的语义信息, 仅依靠固定尺寸特征识别伪装目标. 为解决这一问题, 本文提出了一种基于多尺度特征融合交互的伪装目标检测网络. 该网络包含两个创新设计: 多尺度特征感知模块和双阶段邻级交互模块. 前者旨在通过结合多尺度特征的方式充分捕获复杂场景中丰富的局部-全局场景对比信息. 后者则是整合来自相邻层的特征以利用跨层相关性将有价值的上下文信息从编码器传输到解码器网络. 本文在CHAMELEON、CAMO-Test、COD10K-Test这3个公共数据集上对提出的方法进行了评测并与当前的主流方法对比. 实验结果表明, 本文方法的性能超越了当前的主流方法, 在各项指标上达到了优异的性能水平.  相似文献   

15.
针对现有的多尺度目标检测模型在面对尺度变换和遮挡场景时所使用的融合方法融合不充分,且没有捕捉长距离依赖关系的问题,本文设计了通道融合增强模块和非局部特征交互模块,用于学习不同通道特征之间的相关性和捕捉特征图之间的长距离依赖关系。此外,针对当前检测架构都是基于单金字塔检测结构,存在信息丢失的情况,设计了双金字塔结构,并将提出的融合方法与双金字塔结构结合,在保留原始特征信息的基础上,补充融合后的特征信息。实验结果表明,提出的方法在公共数据集KITTI与PASCAL VOC上与其他先进工作相比具有更高的检测精度,证明了该方法在目标检测任务中的有效性。  相似文献   

16.
遥感目标检测是从遥感图像中对目标进行类别识别与定位的过程,它是遥感图像处理领域中一个重要的研究分支。目标尺度变化大和目标姿态旋转多变是制约遥感图像目标检测性能的重要因素之一。针对上述难点,本文提出了基于多尺度特征与角度信息的无锚定框目标检测方法。首先,该方法在经典特征金字塔网络中嵌入特征选择与对齐模块解决现有的特征金字塔网络存在的特征错位和通道信息丢失两种缺陷,从特征层面提升检测模型多尺度学习能力;其次,针对现有基于锚定框的旋转目标检测方法存在超参数敏感的问题,在基于无锚定框目标检测网络基础上加入了旋转边界框定位方式,无需对检测性能敏感的锚定框超参数进行设置;最后,为了解决旋转边界框存在边界突变问题,该方法将旋转边界框转换为二维高斯分布表示,并引入基于二维高斯分布的旋转回归定位损失函数来驱动检测网络学习目标的方向信息。实验结果表明,在多尺度和旋转目标检测方面,该方法的性能优于近几年提出的遥感目标检测方法。  相似文献   

17.
针对自动驾驶场景中车载平台计算资源有限及小目标检测精度较低等问题,提出一种基于Efficientdet的单阶段目标检测框架Efficientdet-Gs.通过重构倒转残差瓶颈MBConv来改进主干网络Efficientnet,在不牺牲精度的同时降低了网络的参数量和计算量;设计多尺度注意力机制模块应用于特征融合网络,进一...  相似文献   

18.
在R-CNN框架提出后,基于深度学习的目标检测框架逐渐成为主流,可分为基于候选窗口和基于回归两类。近两年来,在Faster R-CNN、YOLO、SSD等经典的基于深度学习目标检测框架的基础上,出现了大量的优秀框架。根据优化方法对近几年提出的框架进行了梳理和总结。在PASCAL_VOC和MS COCO等主流测试集上对目标检测方法的性能及优缺点进行了对比分析。讨论了目标检测领域当前面临的困难与挑战,对可能的发展方向进行了展望。  相似文献   

19.
通过对原SSD(Single Shot Multibox Detector)模型的研究与分析,针对其对小目标检测能力较弱的问题,提出了一种基于密集模块与特征融合操作的改进模型。该模型以Inception-ResNet-V2与DenseNet为基础,吸取了inception模块中稀疏连接与密集网络中密集连接的研究思路,将两种方法融合在一起,提出了Inception-Dense特征提取结构。在多尺度检测的部分,借鉴并改进了特征金字塔的特征融合模块来加强对中小目标的检测能力。根据改进模型及实验数据集的相关特性,对默认框的映射机制也进行了重新设定。结果表明:该方法在Kitti数据集上的平均测试精确度(mAP)为83.8%;识别率相比于原SSD模型的72.8%,提升了11个百分点。FPS方面也有接近38%的提升,从原来的39提升到了54。  相似文献   

20.
SSD(Single Shot MultiBox Detector)是一种基于深度学习的目标检测算法,它作为当前最为主流的检测算法之一,在极大地提高检测速度的同时,还能保证一定的检测精度,但是仍难以满足实际应用的需求。本文在SSD模型的基础上,引入注意力机制,提出一种基于SSD改进的目标检测算法。注意力机制能够有效地提高卷积神经网络对图片特征的提取能力,从而进一步提高算法的检测精度。改进后的算法在Pascal VOC数据集上进行对比试验。实验结果表明,改进后的模型在Pascal VOC2007测试集上的检测精度达到78.5% mAP(mean Average Precision),比改进前提高4.2个百分点,在Pascal VOC2012测试集上的检测精度达到77.1% mAP,比改进前提高4.7个百分点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号