首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
文本分类任务是自然语言处理领域内一个重要的研究问题.近年来,因处理复杂网络结构的出色能力,图神经网络模型(Graph Neural Network,GNN)受到广泛关注并被引入到文本分类任务中.在之前的研究中,基于图卷积网络(Graph Convolu-tional Neural Network,GCN)的分类模型使用...  相似文献   

2.
随着图卷积网络的发展,图卷积网络已经应用到很多任务中,其中就包含文本分类任务.通过将文本数据表示成图数据,进而在图上应用图卷积,从而捕获文本的结构信息和单词间的长距离依赖关系获得了良好的分类效果.但将文本建模成图模型后,图卷积网络面临着文本上下文语义信息和局部特征信息表示不充分的问题.提出一种新的模型,利用双向长短时记...  相似文献   

3.
文本分类是自然语言处理中一个基本而又重要的任务,近年来,图神经网络被越来越多地应用于文本分类中。然而,使用图神经网络的图表示学习在涉及文本分类的任务中不能很好地满足新词的归纳学习,其一般假设训练和测试数据来自相同的分布,但现实中这个假设经常不成立。为了克服这些问题,文中提出了Invariant-GCN,用于通过GCN进行归纳文本分类。首先为每个文档构建单个图,使用GCN根据其局部结构学习细粒度的单词表示,这可以有效地为新文档中没见过的单词生成嵌入进而将单词节点作为文档嵌入合并;然后提取最大限度地保留不变类内信息的期望子图,使用这些子图进行学习不受分布变化的影响;最后通过图分类方法完成文本分类。在4个基准数据集上与5种分类方法进行了比较,实验结果表明Invariant-GCN具有良好的文本分类效果。  相似文献   

4.
针对图嵌入式文本分类方法在预测性能和归纳能力方面的缺陷,在文本图卷积网络(TextGCN)的基础上,进行适当改进。结合预测文本嵌入(PTE)的高效训练和归纳性,在各个网络层中使用不同的图;通过异质图卷积网络架构来学习特征嵌入,利用习得的特征进行归纳推理。实验结果表明,在大量训练样本标注的情况下,所提方法取得了与其它方法相当或稍优的性能。在少量训练样本标注的情况下,所提方法表现更优,性能增益范围为2%~7%,支持更快的训练和泛化性。  相似文献   

5.
近年来,图神经网络模型因其对非欧氏数据的建模和对全局依赖关系的捕获能力而广泛应用于文本分类任务。现有的基于图卷积网络的分类模型中的构图方法存在消耗内存过大、难以适应新文本等问题。此外,现有研究中用于描述图节点间的全局依赖关系的方法并不完全适用于分类任务。为解决上述问题,该文设计并提出了基于概率分布的文本分类网络模型,以语料库中的词和标签为节点构建标签-词异构关系图,利用词语在各标签上的概率分布描述节点间的全局依赖关系,并通过图卷积操作进行文本表示学习。在5个公开的文本分类数据集上的实验表明,该文提出的模型在有效缩减图尺寸的同时,相比于其他文本分类网络模型取得了较为先进的结果。  相似文献   

6.
由于遥感图像包含物体类别多样,单个语义类别标签无法全面地描述图像内容,而多标签图像分类任务更加具有挑战性.通过探索深度图卷积网络(GCN),解决了多标签遥感图像分类缺乏对标签语义信息相关性利用的问题,提出了一种新的基于图卷积的多标签遥感图像分类网络,它包含图像特征学习模块、基于图卷积网络的分类器学习模块和图像特征差异化模块三个部分.在公开多标签遥感数据集Planet和UCM上与相关模型进行对比,在多标签遥感图像分类任务上可以得到了较好的分类结果.该方法使用图卷积等模块将多标签图像分类方法应用到遥感领域,提高了模型分类能力,缩短了模型训练时间.  相似文献   

7.
针对文本分类任务中标注数量少的问题,提出了一种基于词共现与图卷积相结合的半监督文本分类方法。模型使用词共现方法统计语料库中单词的词共现信息,过滤词共现信息建立一个包含单词节点和文档节点的大型图结构的文本图,将文本图中邻接矩阵和关于节点的特征矩阵输入到结合注意力机制的图卷积神经网络中实现了对文本的分类。实验结果表明,与目前多种文本分类算法相比,该方法在经典数据集20NG、Ohsumed和MR上均取得了更好的效果。  相似文献   

8.
图卷积神经网络在文本分类领域受到广泛关注,但同时存在过平滑的问题。此外,现有研究中掩码机制是在文本结构上进行融合,可能并不完全适用于基于图卷积神经网络的文本分类方法。因此,该文针对图结构提出了融合掩码机制的图卷积神经网络MaskGCN,直接将掩码机制引入文本图结构,并采用全局共享矩阵动态构建文本级别的多粒度文本图。在THUCNews、今日头条和SougoCS数据集上的实验表明,该文模型在有效抑制过平滑的同时,相比于其他文本分类模型取得了较优的结果。  相似文献   

9.
文本分类是自然语言处理领域中常见的任务,机器学习和深度学习在该任务中已有较多研究并取得了很大进展,然而,这些传统方法只能处理欧氏空间的数据,不能完全有效地表达出文本的语义信息。为了打破传统的学习模式,诸多研究开始尝试用图表示文本中各实体间的丰富关系,并利用图卷积神经网络学习文本表示。文中对基于图卷积神经网络的文本分类方法进行了综述,首先概述了图卷积神经网络的背景与原理;其次,利用不同类型的图网络详细阐述了基于图卷积神经网络的文本分类方法,同时分析了图卷积神经网络在网络深度上的局限性,并介绍了深层网络在文本分类任务上的最新进展;最后,通过实验比较了各模型的分类性能,并探讨了该领域的难点与未来的发展方向。  相似文献   

10.
由于短文本长度较短,在分类时会面临数据稀疏和语义模糊等问题.提出新型图卷积网络BTM_GCN,该网络利用双项主题模型(Biterm Topic Model,BTM)在短文本数据集上训练出固定数量的文档级潜在主题,并作为一种节点嵌入到文本异构图中,再与异构图中的文档节点进行连接,最后利用图卷积网络来捕获文档、词与主题节点...  相似文献   

11.
张虎  柏萍 《计算机科学》2022,49(2):279-284
随着图神经网络技术在自然语言处理领域中的广泛应用,基于图神经网络的文本分类研究受到了越来越多的关注,文本构图是图神经网络应用到文本分类中的一项重要研究任务,已有方法在构图时通常不能有效捕获句子中远距离词语的依赖关系.短文本分类是待分类文本中普遍较短的一类特殊文本分类任务,传统的文本表示通常比较稀疏且缺乏丰富的语义信息....  相似文献   

12.
针对单一的卷积神经网络文本分类模型忽视词语在上下文的语义变化,未对影响文本分类效果的关键特征赋予更高权值的问题,提出了一种融合多重注意力机制的卷积神经网络文本分类模型.该模型将注意力机制分别嵌入卷积神经网络的卷积层前后,对影响文本分类效果的高维特征和低维特征进行权值的重新分配,优化特征提取过程,实现特征向量的精确分类....  相似文献   

13.
图卷积网络近年来受到大量关注,同时自注意机制作为Transformer结构及众多预训练模型的核心之一也得到广泛运用.该文从原理上分析发现,自注意机制可视为图卷积网络的一种泛化形式,其以所有输入样本为节点,构建有向全连接图进行卷积,且节点间连边权重可学.在多个文本分类数据集上的对比实验一致显示,使用自注意机制的模型较使用...  相似文献   

14.
随着大数据时代的演进,互联网中的谣言成井喷状涌现.目前网络谣言鉴别方法中,基于监督学习的模型在训练过程中需要大量标注数据,同时网络谣言的人工标注用时较长,故提出采用半监督学习的图卷积神经网络,可有效利用无标注数据.通过在有标注节点上训练模型,更新所有节点共享的权重矩阵,将有标注节点信息传播给无标注节点,同时解决监督学习...  相似文献   

15.
小样本文本分类任务同时面临两个主要问题:①样本量少,易过拟合;②在元学习框架的任务形式下,监督信息被进一步稀疏化.近期工作中,利用图神经网络建模样本的全局信息表示(full context embedding)成为小样本学习领域中一种行之有效的方法,但将其迁移至小样本文本分类任务,由于文本多噪声,且特征易混淆,图神经网...  相似文献   

16.
图卷积神经网络(Graph Convolutional Neural Network)能有效地提取非欧式距离数据中的特征信息。提出一种基于图卷积网络模型的无监督社区检测算法。选择图中某些节点添加人工标签来模拟在图上的信号输入,使其满足图卷积网络的传播特征的要求,通过修改后的图卷积网络传播规则将节点本身的标签传递至其相邻节点,通过对同一节点获得的不同标签进行比较后将节点归类,之后优化归类结果并输出社区划分矩阵。使用现实世界的数据集进行测试,并与一些其他社区检测算法进行对比评估。实验结果表明算法在不同类型的数据集中都能得到很好的社区划分效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号