首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 734 毫秒
1.
计算机视觉的快速发展对嵌入式产品的系统性能要求越来越高,传统的现场可编程门阵列(Field Programmable Gate Array,FPGA)平台存在计算吞吐未能很好匹配内存带宽,通用处理器对卷积神经网络(Convolutional Neural Network,CNN)的实现效率不高,未能满足性能要求等问题。针对以上设计瓶颈,使用经典的LeNet-5神经网络模型,在Xilinx ZC706嵌入式开发平台上设计了一个高性能的人脸识别神经网络加速器,在高层次综合(High Level Synthesis,HLS)工具的基础上通过存储优化、定点量化、运算优化等方法对神经网络模型进行优化改进,实现了7层的CNN加速器。实验结果表明,CNN加速器的工作频率为200 MHz,相较于CPU,加速器实现了126倍加速,相较于GPU速度提升10倍以上,并且功耗仅为2.62 W。  相似文献   

2.
为提高目前硬件运行卷积神经网络(CNN)的速度和能效,针对主流CNN网络的卷积计算设计加速模块并在FPGA上实现用于加速CNN网络的SoC系统。硬件平台采用带有ARM处理器的ZCU102 FPGA开发板,系统采用处理器和加速器的结构进行设计。加速器负责卷积计算,采用分块技术并重组卷积计算循环次序,使片上缓存的数据复用率更高,减少系统与内存之间数据的传输。支持1×1到11×11的卷积核尺寸,硬件支持的激活函数为ReLU和Leaky ReLU。处理器负责控制并处理CNN网络的其它计算,使SoC系统具有通用性和灵活性。实验结果表明,在100 MHz的工作频率下,峰值计算性能可以达到42.13 GFLOPS,相比CPU和其它FPGA计算的性能有一定提升。  相似文献   

3.
卷积神经网络(Convolutional Neural Network,CNN)是目前主流视觉算法不可或缺的关键部分.为提高CNN模型推理速度,学界提出了众多异构加速方法以满足不同场景下的多元加速需求.但如何在资源与能耗受限的在轨卫星上稳定高效地加速CNN仍是极具挑战的课题.为此,本文通过软硬件协同设计,着力优化微指令编码、指令级并行和运算级并行3个加速器设计的关键部分,在星上常见的Xilinx VX690T FPGA芯片上设计实现了一种微指令序列调度数据流的CNN加速器.在软件层面,本文提出一种可扩展的微指令编码格式及相应的编译方法.通过卷积循环分块和算子融合策略实现图级别优化,生成加速器可执行的微指令序列.在硬件层面,本文设计实现了一个由微控制器与逻辑运算器组成的RTL级CNN加速器.微控制器通过粗粒度流水线实现各类指令的并行执行.逻辑运算器通过DSP48E1计算资源级联所构建的计算阵列实现卷积算子的细粒度并行运算.实验结果表明,加速器设计功耗10.68W,在加速YOLOV3Tiny算法时,峰值吞吐率(Runtime Max Throughput,RMT)达到378.63 GOP/...  相似文献   

4.
针对将各种卷积神经网络(CNN)模型部署在不同硬件端来实现算法加速时所遇到的耗费时间,工作量大等问题,采用Tengine工具链这一新兴的深度学习编译器技术来设计通用深度学习加速器,来将卷积神经网络模型与硬件后端高效快速对接;深度学习加速器的平台采用ZYNQ系列的ZCU104开发板,采用软硬件协同设计的思想,将开源的英伟达深度学习加速器(NVDLA)映射到可编程逻辑门阵列(FPGA)上,与ARM处理器构成SoC系统;NVDLA整体架构规范,包含软硬件设计,采用Tengine工具链代替原来官方的编译工具链;之后在搭建好的NVDLA平台上实现lenet-5和resnet-18的网络加速,完成了mnist和cifar-10的数据集图像分类任务;实验结果表明,采用Tengine工具链要比NVDLA官方的编译工具链推理速度快2.5倍,并且量化工具使用方便,网络模型部署高效。  相似文献   

5.
注意力机制最近在深度神经网络中表现出优越的性能,但其计算包含复杂的数据流,内存开销和计算量大,需要定制加速器来优化推理计算。提出一种针对注意力机制计算的加速器结构。采用基于硬件控制的灵活分块方法,将模型中的巨大矩阵分成硬件亲和的计算块,使块矩阵的计算匹配加速器脉动阵列;提出基于双步softmax函数分解计算的层融合计算方法,有效减少了注意力模型计算对内存的访问。采用硬件描述语言HDL设计实现了细粒度计算调度的层融合注意力模型加速器结构。基于XILINX FPGA器件和HLS工具进行了性能评估。相同设置下,与CPU相比延迟加速了4.9倍,与GPU相比能效提升了1.24倍。  相似文献   

6.
雷小康  尹志刚  赵瑞莲 《计算机应用》2020,40(10):2811-2816
针对卷积神经网络(CNN)在资源受限的硬件设备上运行功耗高及运行慢的问题,提出一种基于现场可编程门阵列(FPGA)的CNN定点计算加速方法。首先提出一种定点化方法,并且每层卷积设计不同的尺度参数,使用相对散度确定位宽的长度,以减小CNN参数的存储空间,而且研究不同量化区间对CNN精度的影响;其次,设计参数复用方法及流水线计算方法来加速卷积计算。为验证CNN定点化后的加速效果,采用了人脸和船舶两个数据集进行验证。结果表明,相较于传统的浮点卷积计算,所提方法在保证CNN精度损失很小的前提下,当权值参数和输入特征图参数量化到7-bit时,在人脸识别CNN模型上的压缩后的权重参数文件大小约为原来的22%,卷积计算加速比为18.69,同时使FPGA中的乘加器的利用率达94.5%。实验结果表明了该方法可以提高卷积计算速度,并且能够高效利用FPGA硬件资源。  相似文献   

7.
雷小康  尹志刚  赵瑞莲 《计算机应用》2005,40(10):2811-2816
针对卷积神经网络(CNN)在资源受限的硬件设备上运行功耗高及运行慢的问题,提出一种基于现场可编程门阵列(FPGA)的CNN定点计算加速方法。首先提出一种定点化方法,并且每层卷积设计不同的尺度参数,使用相对散度确定位宽的长度,以减小CNN参数的存储空间,而且研究不同量化区间对CNN精度的影响;其次,设计参数复用方法及流水线计算方法来加速卷积计算。为验证CNN定点化后的加速效果,采用了人脸和船舶两个数据集进行验证。结果表明,相较于传统的浮点卷积计算,所提方法在保证CNN精度损失很小的前提下,当权值参数和输入特征图参数量化到7-bit时,在人脸识别CNN模型上的压缩后的权重参数文件大小约为原来的22%,卷积计算加速比为18.69,同时使FPGA中的乘加器的利用率达94.5%。实验结果表明了该方法可以提高卷积计算速度,并且能够高效利用FPGA硬件资源。  相似文献   

8.
卷积神经网络(convolutional neural network, CNN)模型量化可有效压缩模型尺寸并提升CNN计算效率.然而,CNN模型量化算法的加速器设计,通常面临算法各异、代码模块复用性差、数据交换效率低、资源利用不充分等问题.对此,提出一种面向量化CNN的嵌入式FPGA加速框架FAQ-CNN,从计算、通信和存储3方面进行联合优化,FAQ-CNN以软件工具的形式支持快速部署量化CNN模型.首先,设计面向量化算法的组件,将量化算法自身的运算操作和数值映射过程进行分离;综合运用算子融合、双缓冲和流水线等优化技术,提升CNN推理任务内部的并行执行效率.然后,提出分级编码与位宽无关编码规则和并行解码方法,支持低位宽数据的高效批量传输和并行计算.最后,建立资源配置优化模型并转为整数非线性规划问题,在求解时采用启发式剪枝策略缩小设计空间规模.实验结果表明,FAQ-CNN能够高效灵活地实现各类量化CNN加速器.在激活值和权值为16 b时,FAQ-CNN的加速器计算性能是Caffeine的1.4倍;在激活值和权值为8 b时,FAQ-CNN可获得高达1.23TOPS的优越性能.  相似文献   

9.
《微型机与应用》2019,(11):96-101
近年来,卷积神经网络(CNN)在计算机视觉任务中得到了广泛的应用,可编程逻辑门阵列(FPGA)以其高性能、高能效、高灵活性等优点被广泛应用于CNN的加速。提出了一种基于FPGA的卷积神经网络加速器的设计与实现方法,以期在资源和功耗受限的平台中为CNN的计算提供加速。以VC707开发板为FPGA平台,设计了一种新的卷积神经网络Do Net,可以实现对Minist手写数据集的识别分类。测试结果表明,基于FPGA实现的Do Net对Minist数据集的识别准确率为95%,测试显示的识别时间为0. 545 ms,功耗为1. 95 W。  相似文献   

10.
针对高效视频编解码标准中后处理CNN算法在通用平台运行时产生的高延时缺点,提出一种基于现场可编程逻辑门阵列(FPGA)的后处理卷积神经网络硬件并行架构。提出的并行架构通过改进输入与输出缓冲的数据并发过程,调整卷积模块整体并行度,加快模块硬件流水。实验结果表明,基于本文所提出的并行架构设计的CNN硬件加速器在Xilinx ZCU102上处理分辨率为176×144视频流,计算性能相当于每秒360.5 GFLOPS,计算速度可满足81.01 FPS,相比时钟频率4 GHz的Intel i7-4790K,计算速度加快了76.67倍,相比NVIDIA GeForce GTX 750Ti加速了32.50倍。在计算能效比方面,本文后处理CNN加速器功耗为12.095 J,能效比是Intel i7-4790K的512.90倍,是NVIDIA GeForce GTX 750Ti的125.78倍。  相似文献   

11.
目前,CNN已广泛应用于许多应用场景中,包括图像分类、语音识别、视频分析、文档分析等。由于CNN计算密集,常以GPU进行加速,但GPU功耗高,不适用于CNN推理阶段。基于此,文中研究了基于FPGA的CNN图像识别加速与优化的应用方法,利用Intel FPGA提供的OpenCL SDK,在FPGA板卡上设计并优化了CNN前向模型。首先,针对计算量问题,通过功能模块划分,充分发挥FPGA的高计算效能优势。其次,优化核心算法,提高运行速度;分析特征图处理操作,利用参数共享策略降低数据存储量;采用通道传输数据,减少访问片外存储次数。最后,对数据缓存、数据流、循环进行优化设计,缓解了FPGA片上的资源限制;通过量化参数降低FPGA内存资源占用量。实验结果表明,FPGA具有较低的功耗,CPU的功耗是其2.1倍,而GPU的功耗是其6.5倍;与近年来相关领域文献中提出的方法相比,所提方法具有较高的吞吐量和计算性能。  相似文献   

12.
随着人工智能的快速发展,卷积神经网络(CNN)在很多领域发挥着越来越重要的作用。分析研究了现有卷积神经网络模型,设计了一种基于现场可编程门阵列(FPGA)的卷积神经网络加速器。在卷积运算中四个维度方向实现了并行化计算;提出了参数化架构设计,在三种参数条件下,单个时钟周期分别能够完成512、1024、2048次乘累加;设计了片内双缓存结构,减少片外存储访问的同时实现了有效的数据复用;使用流水线实现了完整的神经网络单层运算过程,提升了运算效率。与CPU、GPU以及相关FPGA加速方案进行了对比实验,实验结果表明,所提出的设计的计算速度达到了560.2 GOP/s,为i7-6850K CPU的8.9倍。同时,其计算的性能功耗比达到了NVDIA GTX 1080Ti GPU的3.0倍,与相关研究相比,所设计的加速器在主流CNN网络的计算上实现了较高的性能功耗比,同时不乏通用性。  相似文献   

13.
余成宇    李志远    毛文宇  鲁华祥       《智能系统学报》2020,15(2):323-333
针对卷积神经网络计算硬件化实现困难的问题,之前大部分卷积神经网络加速器的设计都集中于解决计算性能和带宽瓶颈,忽视了卷积神经网络稀疏性对加速器设计的重要意义,近来少量的能够利用稀疏性的卷积神经网络加速器设计也往往难以同时兼顾计算灵活度、并行效率和资源开销。本文首先比较了不同并行展开方式对利用稀疏性的影响,分析了利用稀疏性的不同方法,然后提出了一种能够利用激活稀疏性加速卷积神经网络计算的同时,相比于同领域其他设计,并行效率更高、额外资源开销更小的并行展开方法,最后完成了这种卷积神经网络加速器的设计并在FPGA上实现。研究结果表明:运行VGG-16网络,在ImageNet数据集下,该并行展开方法实现的稀疏卷积神经网络加速器和使用相同器件的稠密网络设计相比,卷积性能提升了108.8%,整体性能提升了164.6%,具有明显的性能优势。  相似文献   

14.
Zhang  Yonghua  Jiang  Hongxu  Liu  Xiaojian  Cao  Haiheng  Du  Yu 《The Journal of supercomputing》2022,78(3):3205-3225

The convolutional neural networks (CNNs) are widely used in modern AI systems for their superior accuracy but at the cost of high computational complexity, which involve enormous communication bandwidth and storage resources requirement. The computation requirement can be addressed effectively to achieve high throughput by highly parallel compute paradigms of current CNNs accelerators. But the energy consumption still remains high as communication can be more expensive than computation, especially for low power embedded platform. To address this problem, this paper proposes a CNNs accelerator based on a novel storage and dataflow on multi-processor system on chip (MPSoC) platform. By minimizing data access and movement and maximizing data reuse, it can achieve the energy efficient CNNs inference acceleration. The optimization strategies mainly involve four aspects. Firstly, an external memory sharing architecture adopting two-dimensional array storage mode for CPU-FPGA collaborative processing is proposed to achieve high data throughput and low bandwidth requirement for off-chip data transmission. Secondly, the minimized data access and movement on chip are realized by designing a multi-level hierarchical storage architecture. Thirdly, a cyclic data shifting method is proposed to achieve maximized data reuse based on both spatial and temporal. In addition, a bit fusion method based on the 8-bit dynamic fixed-point quantization is adopted to achieve double throughput and computational efficiency of a single DSP. The accelerator proposed in this paper is implemented on Zynq UltraScale?+?MPSoC ZCU102 evaluation board. By running the benchmark network of VGG16 and Tiny-YOLO on the accelerator, the throughput and the energy efficiency are evaluated. Compared with the current typical accelerators, the proposed accelerator can increase system throughput by up to 41x, single DSP throughput by up to 7.63x, and system energy efficiency by up to 6.3x.

  相似文献   

15.
大多数基于卷积神经网络(CNN)的算法都是计算密集型和存储密集型的,很难应用于具有低功耗要求的航天、移动机器人、智能手机等嵌入式领域。针对这一问题,提出一种面向CNN的高并行度现场可编程逻辑门阵列(FPGA)加速器。首先,比较研究CNN算法中可用于FPGA加速的4类并行度;然后,提出多通道卷积旋转寄存流水(MCRP)结构,简洁有效地利用了CNN算法的卷积核内并行;最后,采用输入输出通道并行+卷积核内并行的方案提出一种基于MCRP结构的高并行度CNN加速器架构,并将其部署到XILINX的XCZU9EG芯片上,在充分利用片上数字信号处理器(DPS)资源的情况下,峰值算力达到2 304 GOPS。以SSD-300算法为测试对象,该CNN加速器的实际算力为1 830.33 GOPS,硬件利用率达79.44%。实验结果表明,MCRP结构可有效提高CNN加速器的算力,基于MCRP结构的CNN加速器可基本满足嵌入式领域大部分应用的算力需求。  相似文献   

16.
现有的卷积神经网络由于其结构复杂且依赖的数据集庞大,难以满足某些实际应用或者计算平台对运算性能的要求和能耗的限制。针对这些应用或计算平台,对基于ARM+FPGA平台的二值化算法进行了研究,并设计了二值神经网络,该网络减少了数据对存储单元的需求量,也降低了运算的复杂度。在ARM+FPGA平台内部实现时,通过将卷积的乘累加运算转换为XNOR逻辑运算和popcount等操作,提高了整体的运算效率,降低了对能源和资源的消耗。同时,根据二值神经网络中数据存储的特点提出了新的行处理改进算法,提高了网络的吞吐量。该实现方式在GOPS、能源和资源效率方面均优于现有的FPGA神经网络加速方法。  相似文献   

17.
巩杰  赵烁  何虎  邓宁 《计算机工程》2022,48(3):170-174+196
深度卷积神经网络(CNN)模型中卷积层和全连接层包含大量卷积操作,导致网络规模、参数量和计算量大幅增加,部署于CPU/GPU平台时存在并行计算性能差和不适用于移动设备环境的问题,需要对卷积参数做量化处理并结合硬件进行加速设计。现场可编程门阵列(FPGA)可满足CNN并行计算和低功耗的需求,并具有高度的灵活性,因此,基于FPGA设计CNN量化方法及其加速系统。提出一种通用的动态定点量化方法,同时对网络的各个层级进行不同精度的量化,以减少网络准确率损失和网络参数的存储需求。在此基础上,针对量化后的CNN设计专用加速器及其片上系统,加速网络的前向推理计算。使用ImageNet ILSVRC2012数据集,基于VGG-16与ResNet-50网络对所设计的量化方法和加速系统进行性能验证。实验结果显示,量化后VGG-16与ResNet-50的网络规模仅为原来的13.8%和24.8%,而Top-1准确率损失均在1%以内,表明量化方法效果显著,同时,加速系统在运行VGG-16时,加速效果优于其他3种FPGA实现的加速系统,峰值性能达到614.4 GOPs,最高提升4.5倍,能耗比达到113.99 GOPs/W,最高提升4.7倍。  相似文献   

18.
递归神经网络(RNN)近些年来被越来越多地应用在机器学习领域,尤其是在处理序列学习任务中,相比CNN等神经网络性能更为优异。但是RNN及其变体,如LSTM、GRU等全连接网络的计算及存储复杂性较高,导致其推理计算慢,很难被应用在产品中。一方面,传统的计算平台CPU不适合处理RNN的大规模矩阵运算;另一方面,硬件加速平台GPU的共享内存和全局内存使基于GPU的RNN加速器的功耗比较高。FPGA 由于其并行计算及低功耗的特性,近些年来被越来越多地用来做 RNN 加速器的硬件平台。对近些年基于FPGA的RNN加速器进行了研究,将其中用到的数据优化算法及硬件架构设计技术进行了总结介绍,并进一步提出了未来研究的方向。  相似文献   

19.
In this paper, we propose a novel Convolutional Neural Network hardware accelerator called CoNNA, capable of accelerating pruned, quantized CNNs. In contrast to most existing solutions, CoNNA offers a complete solution to the compressed CNN acceleration, being able to accelerate all layer types commonly found in contemporary CNNs. CoNNA is designed as a coarse-grained reconfigurable architecture, which uses rapid, dynamic reconfiguration during CNN layer processing. The CoNNA architecture enables the on-the-fly selection of the CNN network that should be accelerated and also supports the acceleration of CNN networks with dynamic topology. Furthermore, by being able to directly process compressed feature and kernel maps, and skip all ineffectual computations during CNN layer processing, the CoNNA CNN accelerator is able to achieve higher CNN processing rates than some of the previously proposed solutions. The CoNNA architecture has been implemented using Xilinx ZynqUtrascale+ FPGA family and compared with seven previously proposed CNN hardware accelerators. Results of the experiments seem to indicate that the CoNNA architecture is up to 14.10, 6.05, 4.91, 2.67, 11.30, 3.08 and 3.58 times faster than previously proposed MIT's Eyeriss, NullHop, NVIDIA's Deep Learning Accelerator (NVDLA), NEURAghe, CNN_A1, fpgaConvNet, and Deephi's Aristotle CNN accelerators respectively, while using identical number of computing units and operating at the same clock frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号