共查询到20条相似文献,搜索用时 78 毫秒
1.
目的 针对传统局部方向模式(LDP)在特征提取的充分性、对光照和噪声等的鲁棒性以及识别时间长短这3方面不能同时取得一个很好的平衡效果,提出了一种双空间局部方向模式(DSLDP)的人脸识别方法。方法 首先,将图像3×3邻域像素灰度值与8个Kirsch模板算子卷积,得到8个方向的边缘响应值,然后,将近邻边缘响应值之间相应作差,对应8个方向的边缘响应差值,将两组值取绝对值,取各自最大值的方向编码成一个二位八进制数,产生DSLDP码。最后,在人脸描述阶段将人脸图像进行分块并把每块转换成DSLDP图,再对DSLDP图进行直方图统计,并利用信息熵对每块进行加权,将所有子块的直方图连接生成人脸特征,再通过PCA进行降维,用最近邻分类器分类识别。结果 在剑桥大学Olivetti实验室(ORL)、Aleix Martinez and Robert Benavente (AR)和中国科学院(CAS-PEAL)的人脸图像数据库进行实验,相比局部方向模式(LDP)、显著型局部方向模式(SLDP)、增强型局部方向模式(ELDP)、局部方向数字模式(LDN)、差值型局部方向模式(DLDP)、中心对称局部方向模式(CSLDP)和梯度中心对称局部方向模式(GCSLDP),DSLDP具有更好的识别性能。5幅测试样本时,在ORL库上取得了97.82%的平均识别率,在AR光照、表情、遮挡A和遮挡B库分别取得了98.00%、98.33%、99.33%、87.67%的平均识别率,在CAS-PEAL光照、表情和饰物库分别取得了99.33%、95.33%、90.00%的平均识别率。结论 1)该方法既考虑了近邻边缘响应值的外在变化,也考虑了近邻边缘响应值之间的内在变化,通过将强度空间和梯度空间人脸特征信息结合使人脸特征得到更加充分的提取。2) DSLDP只考虑邻边缘响应值和边缘响应差值的最大值情况,突出了主要边缘梯度信息,同时又避免了不重要信息的干扰,相比同类基于局部方向模式的单一人脸识别算法,对光照、表情、噪声、遮挡等情况表现出更强的鲁棒性。3) DSLDP码是由二位八进制数构成,特征模式数降低到64,识别时间明显降低。因此,DSLDP算法能同时在识别效果,稳定性和识别时间上取得一个较好的平衡效果。 相似文献
2.
针对差值局部方向模式(DLDP)特征提取不够充分和对光照、噪声等比较敏感的问题,提出一种双差值局部方向模式(DDLDP)人脸识别方法。首先,分别将半径为1的3×3领域像素灰度值和半径为2的5×5领域像素灰度值与8个Kirsch模板算子卷积,得到两组对应8个灰度响应值。然后,将半径为1的灰度响应值,按照相邻前后作差的方式,得到8个灰度响应差值,再将半径为1和2得到的灰度响应值上下作差,也得到8个灰度响应差值。最后,将两组灰度响应差值取绝对值,其最大绝对值所对应下标位置构成DDLDP码。仿真实验结果表明,相比同类基于局部方向模式的单一人脸识别算法,该方法具有更好识别效果。DDLDP更加完整地提取了人脸特征,且表现出对光照和噪声更好的鲁棒性。 相似文献
3.
4.
目的 针对LBP算法对边缘及噪声信息比较敏感,提出一种统一化的局部均值模式(ULMP)描述算子。考虑到全局和局部特征在识别上的互补性,提出一种ULMP描述和双加权融合的人脸识别方法。方法 首先利用ULMP算法获得整幅图像的编码图,接着将其分块,统计每一子块的直方图获得局部纹理特征,并结合BP神经网络得到局部分类结果。引入云模型求取不同子块的权值,对局部分类结果进行加权融合。整体纹理特征的获取是将不同子块的直方图特征串联。在得到全局和局部的分类结果后,将两者加权集成,获得最终的识别结果。结果 在ORL和Yale人脸库上进行实验,ULMP具有很好的识别性能。5幅测试样本时,在ORL库上取得了95.9%的平均识别率,分别比局部二值模式(LBP)、MCT、局部方向模式(LGP)、统一的LBP(ULBP)和局部中心二值模式(CSLBP)高11.3%、10.6%、9.5%、8.9%和3.9%;在Yale库上取得了97.4%的识别率,分别比LBP、MCT、LGP、ULBP和CSLBP高19.9%、17.7%、10.7%和0.7%。在ORL和Yale人脸库上,本文提出的双加权融合模式分别取得了98.5%和98.34%的平均识别率,高于任何单一模块。结论 本文提出的纹理提取算法ULMP,具有很好的平滑噪声及边缘信息的作用,适用于面部纹理特征的提取。利用云模型求取的权值的方法能够较好地发挥局部分类器间的集成作用,最终有效地提高了系统的整体性能。双加权融合模式是一种精确且有效的人脸识别方法,适用于静态人脸图像的匹配识别。 相似文献
5.
6.
局部Gabor二值模式直方图序列(histogram sequence of local Gabor binary patterns,简称HSLGBP)的人脸识别方法具有较高的识别率,但该方法的特征计算较复杂、耗时长,并且特征维数高、匹配速度慢.给出一个并行的HSLGBP方法(简称P-HSLGBP),在多核PC机群上使用MPI实现了该方法,并使用该方法对ORL人脸库中的40人共400幅图像做了实验.理论分析和实验说明了P HSLGBP方法具有较高的加速比和并行计算效率.在保证高识别率前提下,在由10个双核PC机组成的机群环境下的加速比达到17.同时,P-HSLGBP方法具有良好的可扩展性,适于大规模人脸库的快速识别. 相似文献
7.
《计算机应用与软件》2015,(9)
为了提高人脸识别率和效率,提出一种改进局部方向模式特征的人脸识别算法。首先将人脸图像分割成若干不重叠的子块,采用改进局部方向模式算法提取每个子块特征,然后对所有子块的特征进行连接,构成人脸图像的特征向量,最后采用最小二乘支持向机对人脸图像进行识别。在多个人脸库上进行仿真实验,结果表明,该算法获得了比传统算法更高的人脸识别率,而且加快了运行时间,较好地满足人脸识别实时性要求。 相似文献
8.
针对人脸识别因光照、姿态、表情、遮挡及噪声等多种因素的影响而导致的识别率不高的问题,提出一种加权信息熵(IEw)与自适应阈值环形局部二值模式(ATRLBP)算子相结合的人脸识别方法(IE (w) ATR-LBP)。首先,从原始人脸图像分块提取信息熵,得到每个子块的IEw;然后,利用ATRLBP算子分别对每个人脸子块提取特征从而得到概率直方图;最后,将各个块的IEw与概率直方图相乘,再串联成为原始人脸图像最后的特征直方图,并利用支持向量机(SVM)对人脸进行识别。在AR人脸库的表情、光照、遮挡A和遮挡B四个数据集上,IE (w) ATR-LBP方法分别取得了98.37%、94.17%、98.20%和99.34%的识别率。在ORL人脸库上,IE (w) ATR-LBP方法的最大识别率为99.85%;而且在ORL人脸库5次不同训练样本的实验中,与无噪声时相比,加入高斯和椒盐噪声后的平均识别率分别下降了14.04和2.95个百分点。实验结果表明,IE (w) ATR-LBP方法能够有效提高人脸在受光照、姿态、遮挡等影响时的识别率,尤其是存在表情变化及脉冲类噪声干扰时的识别率。 相似文献
9.
《计算机应用与软件》2016,(2)
针对局部五值模式EQP(Elongated Quinary Pattern)采用全局阈值定义造成对图像灰度变化敏感以及在人脸识别中对图像不同分块同等对待问题,提出基于局部五值模式增强方法。首先,通过自适应方法来设置阈值,以提高其对图像灰度变化的鲁棒性;其次,通过特征块加权处理,融入每个分块结构对比信息,以突出不同分块的不同作用。采用在人脸识别领域广泛应用的ORL与YALE人脸库进行比较实验,实验结果表明,新方法明显提高了EQP算子的识别效果。 相似文献
10.
为了提取具有鉴别能力的红外人脸图像局部结构特征,提出一种基于LBP(local binary pattern)鉴别模式的红外人脸识别方法。传统的LBP均匀模式,提取自然图像中占主导地位的信息用于识别,但占主导地位的信息不一定是最适合识别的。为了提取有效的鉴别模式特征,基于监督学习的思想,在LBP模式下引入可分性标准,对不同LBP模式进行有效的模式选择,从而抽取适合识别的鉴别模式。最后,为了利用人脸的空间位置信息,结合分块和直方图技术得到最后的识别特征。实验结果表明,本文鉴别模式可以提取更适合识别的特征,识别性能优于传统的基于均匀模式的LBP方法。 相似文献
11.
12.
基于差值局部方向模式的人脸特征表示 总被引:1,自引:0,他引:1
提出一种基于差值局部方向模式的人脸特征表示方法(difference local directional pattern,简称DLDP):首先,通过Kirsch掩模卷积运算,为每个像素计算8个方向的边缘响应值;然后,计算8个相邻边缘响应值的强度差,前k个最突出的强度差对应的方向编码为1,其他方向编码为0,形成一个8位二进制数表示对应的DLDP模式;此外,针对高分辨率的Kirsch掩模单纯考虑方向性而没有考虑像素位置权重的问题,提出相应的掩模权值设计方法;最后,把每幅图像划分成多个不重叠的局部图像块,通过统计图像块上不同DLDP模式个数生成相应的子直方图,所有子直方图被串联起来表示一幅人脸图像.实验结果表明,该方法在光照、表情、姿态和遮挡方面获得了较好的结果,尤其针对遮挡情况,表现更为突出. 相似文献
13.
14.
15.
基于多尺度局部二值模式的人脸识别 总被引:1,自引:0,他引:1
提出了一种基于多尺度局部二值模式的人脸识别方法.局部二值模式已经被证明是人脸表示的一种有效算子,不过由于其太小以至于鲁棒性不高.在多尺度局部二值模式中,计算是基于块子区域的平均值,而不是基于单个像素值进行的.人脸图像首先被分成小的子区域,具有不同权值的BLBP算子抽取每一子区域的直方图,然后把它们连接起来,组成一个空域增强的特征直方图.在X~2统计量作为不相似度量计算的特征空间里,采用最近邻分类器完成分类识别.实验表明,该方法优于其它的基于LBP的人脸识别算法. 相似文献
16.
通常,采用中心对称局部二值模式CS-LBP对人脸图像只进行一次特征提取,提取的纹理特征不够丰富。因此,本文利用CS-LBP多次提取人脸图像更丰富的纹理特征,提出了多级CS-LBP特征融合的人脸识别算法。首先,用CS-LBP对原始人脸图像进行特征提取;然后,对所得特征图像再进行相同方式的特征提取,这样能够得到原始人脸图像的多级CS-LBP特征图像;最后,将每一级特征图像的分块直方图特征进行融合并用于人脸识别。在ORL、Yale标准人脸库上的实验结果表明,相比人脸图像的一级CS-LBP特征,多级CS-LBP特征融合的方法能够显著提高识别精度。 相似文献
17.
18.
提出一种基于局部差分二值模型(Local Difference Binary Pattern,LDBP)和局部二值模型(Local Binary Pattern,LBP)的特征融合方法,以解决行人检测中检测精确度和鲁棒性不足的问题。对输入图像进行二维离散Haar小波变换,得到不同频率的四个子图像(LL,LH,HL和HH);对低频部分子图像提取LDBP特征,以及对其他三个高频部分子图像提取LBP特征;采用主成分分析法(PCA)分别对得到的LDBP特征和LBP特征进行降维;融合降维后的LDBP特征和LBP特征进行行人检测。在INRIA数据集上采用支持向量机(SVM)进行测试,实验结果表明,该方法能有效地提高检测精确度,且具有较好的鲁棒性。 相似文献
19.
人脸识别是计算机视觉领域的研究热点,应用背景广泛。近年来,流形被认为是视觉感知的基础,流形学习算法被用来发现图像的内在特征。如何利用流形学习后的低维内蕴变量成为相关研究的核心问题。但是利用传统的流形学习算法降维得到的人脸低维特征在可分性上存在一定的不足。此外,流形学习算法对光照和姿态变化敏感。针对这两个问题,提出了一种基于局部二值模式(LBP)和流形知识的人脸识别方法。该方法首先利用LBP算子对人脸图像进行局部特征描述,然后使用流形学习算法获得高维特征数据的低维内蕴变量,并用泰勒展开式近似该流形,获取流形知识,最后利用流形知识估计流形距离来实现人脸识别。实验证明,该方法增强了人脸识别对光照变化的鲁棒性,从而提高了识别性能。 相似文献
20.
针对传统的人脸识别算法在单训练样本的情况下识别率不佳的情况,提出一种结合拉普拉斯滤波与中心对称局部二值模式的人脸识别算法(LFCLBP)。对原始人脸图像进行拉普拉斯滤波处理;然后对图像提取梯度幅值和梯度相位信息,对梯度幅值用CS-LBP算子编码,再将梯度相位量化到16个区间进行编码,将二者融合成人脸图像的LFCLBP特征;分块统计直方图特征,将所有分块的直方图串联起来作为人脸图像的特征向量,并用最近邻分类器识别。在YALE人脸库和AR人脸库上进行测试,测试结果表明该算法有效,在光照变化、表情变化和部分遮挡等环境下对单样本人脸图像具有较好的识别效果。 相似文献