首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
密度峰值聚类(DPC)将数据样本点的局部密度和相对距离进行结合,能对任意形状数据集进行聚类处理,但密度峰值聚类算法存在主观选择截断距离、简单分配策略和较高时间复杂度等问题。为此,提出了一种基于网格近邻优化的密度峰值聚类算法(KG-DPC算法)。首先对数据空间进行网格化,减少了样本数据点之间距离的计算量;在计算局部密度时不仅考虑了网格自身的密度值,而且考虑了周围k个近邻的网格密度值,降低了主观选择截断距离对聚类结果的影响,提高了聚类准确率,设定网格密度阈值,保证了聚类结果的稳定性。通过实验结果表明,KG-DPC算法比DBSCAN、DPC和SDPC算法在聚类准确率上有很大提升,在聚类平均消耗时间上DPC、SNN-DPC和DPC-NN算法分别降低38%、44%和44%。在保证基本聚类准确率的基础上,KG-DPC算法在聚类效率上有特定优势。  相似文献   

2.
密度峰值聚类算法对密集程度不一数据的聚类效果不佳,样本分配过程易产生连带错误.为此,提出一种基于相互邻近度的密度峰值聚类算法.所提算法引入k近邻思想计算局部密度,以此保证密度的相对性.定义综合数据全局和局部特征的样本相互邻近度的度量准则,据此准则,提出一种新的样本分配策略.新的分配策略采用k近邻思想寻找密度峰值,将密度...  相似文献   

3.
密度峰值聚类(DPC)是近年来提出的一种新的密度聚类算法,算法的核心是基于局部密度和相对距离,通过画出决策图,人为选定聚类中心,进而完成聚类.DPC算法利用截断距离计算局部密度,本质上只考虑了周围近邻节点的数量,且算法采用单步分配策略,一定程度上限制了算法对任意数据集的计算精度和有效性.针对上述问题,提出基于二阶k近邻的密度峰值聚类算法(SODPC).算法通过引入节点的二阶k近邻,计算直接密度和间接密度,重新定义局部密度的计算方式.在此基础上,定义非中心节点的多步骤分配策略完成聚类.通过人工和真实数据的测试,证明了该算法对不规则、密度不均匀的数据集具有较好的聚类效果.  相似文献   

4.
传统网格聚类算法聚类质量低,而密度聚类算法时间复杂度高。针对两类算法各自的缺点,结合它们的聚类思想提出了一种新的聚类算法。该算法提出了边缘度密度距作为新的密度度量,并在此基础上逐步确定了类的定义和聚类过程的定义。算法前期通过网格划分操作统计记录了待聚类数据的初始信息,以供随后的k近邻统计使用。在寻找聚类中心点时使用了桶排序的策略,使得算法能快速地选出下一个聚类中心点。随后的聚类步骤是迭代搜索并检验当前类中未检验的k近邻是否满足密度可达性来完成聚类。理论分析和实验测试的结果表明,该算法不仅保持了较高的聚类精度,而且有接近线性的低时间复杂度。  相似文献   

5.
为了更好地解决密度不均衡问题与刻画高维数据相似性度量问题,提出一种基于共享[k]-近邻与共享逆近邻的密度峰聚类算法。该算法计算两个点的共享[k]-近邻数与共享逆近邻数,并结合欧氏距离来确定这两个点之间的共享相似度;将样本点与其逆近邻点的共享相似度之和定义为该点的共享密度,再通过共享密度选取聚类中心。通过实验证明,该算法在人工数据集和真实数据集上的聚类结果较其他密度聚类算法更加准确,并且能更好地处理密度不均衡问题,同时也提高了高维数据的聚类精度。  相似文献   

6.
针对密度峰值聚类算法(DPC)在处理维数较高、含噪声及结构复杂数据集时聚类性能不佳问题,提出一种结合K近邻的改进密度峰值聚类算法(IDPCA)。该算法首先给出新的局部密度度量方法来描述每个样本在空间中的分布情况,然后引入核心点的概念并结合K近邻思想设计了全局搜索分配策略,通过不断将核心点的未分配K近邻正确归类以加快聚类速度,进而提出一种基于K近邻加权的统计学习分配策略,利用剩余点的K近邻加权信息来确定其被分配到各局部类的概率,有效提高了聚类质量。实验结果表明,IDPCA算法在21个典型的测试数据集上均有良好的适用性,而在与DPC算法及另外3种典型聚类算法的性能指标对比上,其优势更为明显。  相似文献   

7.
针对密度峰聚类分配时,仅考虑样本点与指向点(密度比它大的最近点)之间的距离,不适用于流形聚类(如Circleblock数据集、Lineblobs数据集等)的问题,提出了[K]近邻相似度优化的密度峰聚类算法。在计算每个点的密度与指向点后,通过相似度函数,找出每个点的[K]近邻,然后根据[K]近邻信息判断样本点的指向点是否正确,对于指向错误的点重新寻找正确的指向点,可以有效减少错误分配。在人工数据集和UCI数据集上的实验表明,新算法具有更高的准确率。  相似文献   

8.
为解决密度聚类算法在处理高维和多密度数据集时聚类结果不精确的问题,提出一种基于共享近邻亲和度(SNNA)的聚类算法。该算法引入[k]近邻和共享近邻,定义共享近邻亲和度作为对象的局部密度度量。算法首先根据亲和度来提取核心点,然后利用广度优先搜索算法对核心点进行聚类,最后对非核心点进行指派即完成整个数据集的聚类。实验结果表明,该算法能够发现任意形状、大小、密度的聚类;与同类算法相比,SNNA算法在处理高维数据时具有较高的聚类准确率。  相似文献   

9.
稀疏子空间聚类是近年提出的高维数据聚类框架,针对实际数据并不完全满足线性子空间模型的假设,提出[k]近邻约束的稀疏子空间聚类算法。该算法结合数据的子空间结构,[k]近邻及距离信息,在稀疏子空间模型上,添加[k]近邻约束项。添加的约束项符合距离越小,相似系数越大的直观认识且不改变系数矩阵的稀疏性。在人脸数据集Extended YaleB、ORL、AR,物体图像数据集COIL20及手写数据集USPS上的聚类实验表明提出的算法具有良好的性能。  相似文献   

10.
密度峰值聚类算法(DPC)能够有效地进行非球形数据的聚类,该算法需要输入截断距离,人工截取聚类中心,导致DPC算法的聚类效果有时较差。针对这些问题,提出一种结合密度比和系统演化的密度峰值聚类算法(DS-DPC)。利用自然最近邻搜索得出各样本点的邻居数目,根据密度比思想改进密度计算公式,使其能够反映周围样本的分布情况;对局部密度与相对距离的乘积进行降序排列,根据排序值选出聚类中心,将剩余样本按照DPC算法的分配策略进行聚类,避免了手动选择聚类中心的主观性;利用系统演化方法判断聚类结果是否需要合并或分离。通过在多个数据集上进行实验,并与其他聚类算法进行比较,实验结果表明,该算法具有较好的聚类效果。  相似文献   

11.
丁世飞  徐晓  王艳茹 《软件学报》2020,31(11):3321-3333
密度峰值聚类(clustering by fast search and find of density peaks,简称DPC)是一种基于局部密度和相对距离属性快速寻找聚类中心的有效算法.DPC通过决策图寻找密度峰值作为聚类中心,不需要提前指定类簇数,并可以得到任意形状的簇聚类.但局部密度和相对距离的计算都只是简单依赖基于距离度量的相似度矩阵,所以在复杂数据上DPC聚类结果不尽如人意,特别是当数据分布不均匀、数据维度较高时.另外,DPC算法中局部密度的计算没有统一的度量,根据不同的数据集需要选择不同的度量方式.第三,截断距离dc的度量只考虑数据的全局分布,忽略了数据的局部信息,所以dc的改变会影响聚类的结果,尤其是在小样本数据集上.针对这些弊端,提出一种基于不相似性度量优化的密度峰值聚类算法(optimized density peaks clustering algorithm based on dissimilarity measure,简称DDPC),引入基于块的不相似性度量方法计算相似度矩阵,并基于新的相似度矩阵计算样本的K近邻信息,然后基于样本的K近邻信息重新定义局部密度的度量方法.经典数据集的实验结果表明,基于不相似性度量优化的密度峰值聚类算法优于DPC的优化算法FKNN-DPC和DPC-KNN,可以在密度不均匀以及维度较高的数据集上得到满意的结果;同时统一了局部密度的度量方式,避免了传统DPC算法中截断距离dc对聚类结果的影响.  相似文献   

12.
周欢欢  郑伯川  张征  张琦 《计算机应用》2022,42(5):1464-1471
针对基于共享最近邻的密度峰聚类算法中的近邻参数需要人为设定的问题,提出了一种基于自适应近邻参数的密度峰聚类算法。首先,利用所提出的近邻参数搜索算法自动获得近邻参数;然后,通过决策图选取聚类中心;最后,根据所提出的代表点分配策略,先分配代表点,后分配非代表点,从而实现所有样本点的聚类。将所提出的算法与基于共享最近邻的快速密度峰搜索聚类(SNN?DPC)、基于密度峰值的聚类(DPC)、近邻传播聚类(AP)、对点排序来确定聚类结构(OPTICS)、基于密度的噪声应用空间聚类(DBSCAN)和K-means这6种算法在合成数据集以及UCI数据集上进行聚类结果对比。实验结果表明,所提出的算法在调整互信息(AMI)、调整兰德系数(ARI)和FM指数(FMI)等评价指标上整体优于其他6种算法。所提算法能自动获得有效的近邻参数,且能较好地分配簇边缘区域的样本点。  相似文献   

13.
差分隐私是一种基于噪声扰动的隐私保护技术,针对差分隐私保护下噪声导致的聚类中心点偏移较大的问题,提出了一种基于BWP(between-within proportion)指标的差分隐私[k]-means算法。算法将聚类有效性评价指标BWP引入到隐私预算分配过程中,对传统隐私预算分配进行加权处理,在一次迭代中为不同密度分布的簇分配不同的隐私预算,从而添加不同的随机噪声。理论分析表明新算法满足[ε]-差分隐私保护。基于四个标准数据集对新算法进行了实验,实验结果表明,在聚类结果的可用性以及算法的稳定性上新算法具有优势。  相似文献   

14.
针对密度峰值聚类算法(DPC)的聚类结果对截断距离[dc]的取值较为敏感、手动选取聚类中心存在着一定主观性的问题,提出了一种结合鲸鱼优化算法的自适应密度峰值聚类算法(WOA-DPC)。利用加权的局部密度和相对距离乘积的斜率变化趋势实现聚类中心的自动选择,避免了手动选取导致的聚类中心少选或多选的情况;考虑到合理的截断距离[dc]是提高DPC算法聚类效果的重要因素,建立以ACC指标为目标函数的优化问题,利用鲸鱼优化算法(WOA)有效地寻优能力对目标函数进行优化,寻找最佳的截断距离[dc];利用人工合成数据集与UCI上的真实数据集对WOA-DPC算法进行测试。实验结果表明,该算法在FMI、ARI和AMI指标上均优于DPC算法、DBSCAN算法以及K-Means算法,具有更好的聚类表现。  相似文献   

15.
密度峰值聚类算法(Density Peaks Clustering,DPC),是一种基于密度的聚类算法,该算法具有不需要指定聚类参数,能够发现非球状簇等优点。针对密度峰值算法凭借经验计算截断距离[dc]无法有效应对各个场景并且密度峰值算法人工选取聚类中心的方式难以准确获取实际聚类中心的缺陷,提出了一种基于基尼指数的自适应截断距离和自动获取聚类中心的方法,可以有效解决传统的DPC算法无法处理复杂数据集的缺点。该算法首先通过基尼指数自适应截断距离[dc],然后计算各点的簇中心权值,再用斜率的变化找出临界点,这一策略有效避免了通过决策图人工选取聚类中心所带来的误差。实验表明,新算法不仅能够自动确定聚类中心,而且比原算法准确率更高。  相似文献   

16.
随着单细胞RNA测序技术的发展,目前单细胞测序通量由上千细胞发展到主流上万细胞的规模。基于单细胞RNA测序数据的细胞分型是研究细胞的重要问题之一,该问题主要运用无监督聚类方法。现有针对大规模单细胞测序数据的聚类方法通过简化细胞关系网络来降低时间复杂度,从而导致细胞分型准确度降低。而常见较高准确度的细胞分型方法无法处理大规模数据。为此,采用将[k]最近邻与细胞相似度阈值结合构建全新的细胞关系网络,并采用CPU+GPU异构并行计算提高运算速度,通过改进的马尔科夫聚类算法进行细胞聚类。通过在七个较大规模单细胞数据集上实验,发现该算法比现有主要算法具有更好的聚类准确度,从而适合基于主流单细胞测序技术数据的细胞分型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号