首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
人脸合成由于其应用与技术价值,是机器视觉领域的热点之一,而近年来深度学习的突破性进展使该领域吸引了更多关注.将该领域的研究分为四个子类:人脸身份合成、人脸动作合成、人脸属性合成与人脸生成,并系统地总结了这些子类的发展历程、现状,以及现有技术存在的问题.首先针对人脸身份合成,从图形学、数字图像处理与深度学习三个角度总结了各自的合成流程,对关键技术原理进行了详细的解释与分析.其次将人脸动作合成进一步分为利用标签驱动的表情编辑与利用真实人脸驱动的人脸重演,并指出了各自领域中存在的缺陷与难题.然后介绍了基于生成模型,尤其是生成对抗网络在人脸属性合成方面的发展,最终对人脸生成的各类工作进行了简单的阐述.此外,介绍了人脸合成技术的实际应用与当前面临的相关问题,并展望了该领域未来可能的研究方向.  相似文献   

2.
深度生成模型的飞速发展推动了人脸深度伪造技术的进步,以Deepfake为代表的深度伪造模型也得到了十分广泛的应用。深度伪造技术可以对人脸图像或视频进行有目的的操纵,一方面,这种技术广泛应用于电影特效、娱乐场景中,丰富了人们的娱乐生活,促进了互联网多媒体的传播;另一方面,深度伪造也应用于一些可能造成不良影响的场景,给公民的名誉权、肖像权造成了危害,同时也给国家安全和社会稳定带来了极大的威胁,因此对深度伪造防御技术的研究日益迫切。现有的防御技术主要分为被动检测和主动防御,而被动检测的方式无法消除伪造人脸在广泛传播中造成的影响,难以做到“事前防御”,因此主动防御的思想得到了研究人员的广泛关注。然而,目前学术界有关深度伪造防御的综述主要关注基于检测的被动式防御方法,几乎没有以深度伪造主动防御技术为重点的综述。基于此,本文对当前学术界提出的人脸深度伪造主动防御技术进行梳理、总结和讨论。首先阐述了深度伪造主动防御的提出背景和主要思想,并对现有的人脸深度伪造主动防御算法进行汇总和归类,然后对各类主动防御算法的技术原理、性能、优缺点等进行了系统性的总结,同时介绍了研究常用的数据集和评估方法,最后对深度...  相似文献   

3.
针对实际应用中人脸图像存在局部遮挡的情况经常发生,会造成识别率下降和鲁棒性降低。因此针对目前存在的这种情况,提出一种基于改进生成式对抗网络(Generative Adversarial Network,GAN)的表情识别模型,先利用由自动编码器构成的生成器和两个鉴别器(局部鉴别器和全局鉴别器)的对抗学习对遮挡人脸图像填补修复,再在全局鉴别器后面添加多分类层,利用全局鉴别器的部分卷积层并在后面添加多分类层构成表情分类器进行表情识别。最后通过实验进行了不同遮挡面积的人脸图像在填补前后表情识别率的对比和不同算法的识别率对比,实验结果证明识别率会更高,尤其提高了人脸大面积遮挡的识别率。  相似文献   

4.
多聚焦图像融合是一种以软件方式有效扩展光学镜头景深的技术,该技术通过综合同一场景下多幅部分聚焦图像包含的互补信息,生成一幅更加适合人类观察或计算机处理的全聚焦融合图像,在数码摄影、显微成像等领域具有广泛的应用价值。传统的多聚焦图像融合方法往往需要人工设计图像的变换模型、活跃程度度量及融合规则,无法全面充分地提取和融合图像特征。深度学习由于强大的特征学习能力被引入多聚焦图像融合问题研究,并迅速发展为该问题的主流研究方向,多种多样的方法不断提出。鉴于国内鲜有多聚焦图像融合方面的研究综述,本文对基于深度学习的多聚焦图像融合方法进行系统综述,将现有方法分为基于深度分类模型和基于深度回归模型两大类,对每一类中的代表性方法进行介绍;然后基于3个多聚焦图像融合数据集和8个常用的客观质量评价指标,对25种代表性融合方法进行了性能评估和对比分析;最后总结了该研究方向存在的一些挑战性问题,并对后续研究进行展望。本文旨在帮助相关研究人员了解多聚焦图像融合领域的研究现状,促进该领域的进一步发展。  相似文献   

5.
针对任意形状遮挡下人脸修复,现有方法容易产生边缘模糊和恢复结果失真等问题。提出了一种结合边缘信息和门卷积的人脸修复算法。首先,通过先验人脸知识产生遮挡区域的边缘图,以约束人脸修复过程。其次,利用门卷积在部分像素缺失下的精确局部特征描述能力,设计面向图像修复的门卷积深度生成对抗网络(GAN)。该模型由边缘连接生成对抗网络和图像修复生成对抗网络两部分组成。边缘连接网络利用二值遮挡图和待修复图像及其边缘图的多源信息进行训练,实现对缺失边缘图像的自动补全和连接。图像修复网络以补全的边缘图为引导信息,联合遮挡图像进行缺失区域修复。实验结果表明:相比其他算法,该算法修复效果更好,其评价指标比当前基于深度学习的图像修复算法更优。  相似文献   

6.
人脸伪造技术的恶意使用,不仅损害公民的肖像权和名誉权,而且会危害国家政治和经济安全。因此,针对伪造人脸图像和视频的检测技术研究具有重要的现实意义和实践价值。本文在总结人脸伪造和伪造人脸检测的关键技术与研究进展的基础上,分析现有伪造和检测技术的局限。在人脸伪造方面,主要包括利用生成对抗技术的全新人脸生成技术和基于现有人脸的人脸编辑技术,介绍生成对抗网络在人脸图像生成的发展进程,重点介绍人脸编辑技术中的人脸交换技术和人脸重现技术,从网络结构、通用性和生成效果真实性等角度对现有的研究进展进行深入阐述。在伪造人脸检测方面,根据媒体载体的差异,分为伪造人脸图像检测和伪造人脸视频检测,首先介绍利用统计分布差异、拼接残留痕迹和局部瑕疵等特征的伪造人脸图像检测技术,然后根据提取伪造特征的差异,将伪造人脸视频检测技术分为基于帧间信息、帧内信息和生理信号的伪造视频检测技术,并从特征提取方式、网络结构设计特点和使用场景类型等方面进行详细阐述。最后,分析了当前人脸伪造技术和伪造人脸检测技术的不足,提出可行的改进意见,并对未来发展方向进行展望。  相似文献   

7.
针对现有卷积神经网络图像超分辨率算法容易出现过拟合、损失函数的收敛性不足等问题,结合超分辨率算法和生成式对抗网络(GAN)理论,设计一种基于生成式对抗网络的超分辨率算法PESRGAN用于恢复四倍下采样的图像。首先使用残差密集块(RDB)作为基本结构单元,有效避免了过拟合问题;其次使用双层特征损失并使用渗透指数(PI)作为损失的权值,更好地去学习低分辨率到高分辨率图像之间的映射关系;同时使用VGG19作为判别网络高分辨率图像进行分类;最后使用经典数据集,将PESRGAN算法与双三次插值(Bicubic)、SRGAN、ESRGAN算法在客观参数和主观视觉效果进行对比。实验结果表明:在经典数据集上,PESRGAN的平均峰值信噪比(PSNR)达到25.4 dB、平均结构相似性(SSIM)达到0.73,平均渗透指数(PI)达到1.15,在客观参数和主观评价上均优于其他算法,证明了PESRGAN有良好的超分辨率重建的效果。  相似文献   

8.
图像模糊是指在图像捕捉或传输过程中,由于镜头或相机运动、光照条件等因素导致图像失去清晰度和细节,从而影响图像的质量和可用性。为了消除这种影响,图像去模糊技术应运而生。其目的在于通过构建计算机数学模型来衡量图像的模糊信息,从而自动预测去模糊后的清晰图像。图像去模糊算法的研究发展不仅为计算机视觉领域的其他任务提供了便利,同时也为生活领域提供了便捷和保障,如安全监控等。1)回顾了整个图像去模糊领域的发展历程,对盲图像去模糊和非盲图像去模糊中具有影响力的算法进行论述和分析。2)讨论了图像模糊的常见原因以及去模糊图像的质量评价方法。3)全面阐述了传统方法和基于深度学习方法的基本思想,并针对图像非盲去模糊和图像盲去模糊两方面的一些文献进行了综述。其中,基于深度学习的方法包括基于卷积神经网络、基于循环神经网络、基于生成式对抗网络和基于Transformer的方法等。4)简要介绍了图像去模糊领域的常用数据集并比较分析了一些代表性图像去模糊算法的性能。5)探讨了图像去模糊领域所面临的挑战,并对未来的研究方法进行了展望。  相似文献   

9.
10.
11.
现实人脸识别系统的图像采集过程中往往存在光照、姿态、遮挡等不确定性因素,传统的人脸识别方法识别效果不佳,有效地处理这些问题提高识别效率仍是人脸识别系统中的难点。回顾了传统的人脸识别的相关方法,重点针对人脸遮挡的处理方法,从遮挡区域如何重构地生成模型,如何检测遮挡位置的判别模型及鲁棒特征提取三个方面进行了详细的综述,比较了各自的优缺点及应用场合,总结分析了目前有遮挡人脸识别存在的问题和未来研究方向。  相似文献   

12.
随着人脸识别应用领域的逐渐扩大,有遮挡环境下的人脸识别面临着一定的技术挑战.深度学习方法由于其具有强大的学习能力,成为解决有遮挡环境下的人脸识别问题的一种较好的解决方案,但仍面临诸多待解决的问题.减少遮挡对人脸识别算法带来的性能影响是该领域的重点和难点问题之一.从模型、算法和数据集的角度分析了近年来相关研究进展;对比了...  相似文献   

13.
在分析脸部遮挡处理各算法的基础上,提出了自动多值掩模PCA人脸重建模型(MMPCA模型)。该模型首先进行特征提取,计算待测人脸和标准样本的特征脸差,判断遮挡部位,即遮挡类型;接着使用M估计器对遮挡掩模进行估计,为不同像素点估计符合自身特性的幅度参数,生成多值遮挡掩模;再通过3个半二次型函数迭代保证最优合成系数唯一与收敛,获得最优合成系数,重建人脸。实验结果表明,该算法能恢复遮挡部位,减弱遮挡对识别准确率的影响。  相似文献   

14.
基于卷积神经网络的人脸图像修复技术在刑事侦破、文物保护及影视特效等领域有着重要的应用.但现有方法存在着图像修复结果不够清晰以及结果多样化不足等缺点,为此,提出了一种基于变分自编码器的人脸图像修复方法.首先设计了一种变分自编码器的变种网络,通过引入生成对抗网络解决修复人脸图像不清晰的问题,同时对变分自编码器中的隐变量进行约束,使得其中各个维度相互独立,实现特征解耦操作;最后通过动态规划获得最佳分割边界,利用泊松图像编辑得到无缝融合的结果.在CelebA数据集上的实验结果表明,该方法获得了良好的图像修复结果,同时,通过显式地控制隐变量的不同维度,展现了不同属性的人脸图像修复结果.  相似文献   

15.
人脸图像修复技术是近年来图像处理领域的研究热点,而人脸图像大面积缺失导致损失语义信息过多,一直是该领域的重点难点问题.针对这一问题,文中提出了一种基于生成对抗网络的图像分步补全算法.将人脸图像修复问题分为两步,设计两个串联的生成对抗网络,首先残缺图像通过预补全网络进行图像的预补全,预补全图像进入增强网络进行特征增强;判...  相似文献   

16.
基于部分遮挡人脸识别算法的研究   总被引:1,自引:0,他引:1  
林玲 《计算机仿真》2012,29(1):231-233,241
研究人脸识别问题。针对当人脸采集的图像出现面部关键区域遮挡时,传统算法往往需要依靠面部主要关键特征进行识别,遮挡人脸的大部分特征消失,造成的误识别、漏识别问题。为解决上述问题,提出了基于遮挡人脸图片的识别方法。方法首先对遮挡人脸图像进行小波变换,然后建立特征粗糙集,根据特征加权融合算法将细节特征向量进行有效联系,进而根据联系性进行识别。实验结果表明,方法的能够对遮挡的人脸图像进行有效的识别,提高了身份识别的安全性和准确度。  相似文献   

17.
人脸遮挡区域检测与重建   总被引:1,自引:0,他引:1  
提出一种基于模糊主分量分析技术(FPCA)的人脸遮挡检测与去除方法.首先,有遮挡人脸被投影到特征脸空间并通过特征脸的线性组合得到一个重建人脸.计算重建图与原图的差图像,加权滤波后并归一化作为被遮挡的概率,以此概率为权重由原图和重建图合成新的人脸.在后续迭代中,根据遮挡概率使用模糊主分量分析进行分析重建,并使用累积误差进行遮挡检测.实验结果表明,算法可精确定位人脸遮挡区域,得到平滑自然的重建人脸图像,优于经典的迭代PCA方法.  相似文献   

18.
白宗文  弋婷婷  周美丽  魏嵬 《计算机工程》2021,47(5):213-220,228
传统图像修复方法在修复受损区域较大的图像时会出现修复结果过于平滑或模糊的现象,并且较难重建合理的人脸图像结构.在传统生成对抗网络的鉴别器中引入多尺度特征融合方法,将不同深度的特征图经过上采样后直接相加,使浅层信息和深层信息有效结合.通过借助高层特征把握图像的整体规律,同时利用低层特征填充人脸图像的细节纹理,进而使一张图...  相似文献   

19.
针对眼镜遮档对人脸识别影响较大这一问题,提出一种从正面人脸图像中提取并摘除眼镜的方法。首先利用主成分分析和独立成分分析法对输入的戴眼镜人脸进行重建,对比重建人脸和输入人脸,从而提取眼镜遮档区域;然后经过迭代误差补偿合成相应的无眼镜人脸;最后考虑到合成图像的特殊性,使用改进的特征加权方法实现人脸识别。实验结果表明,利用提出的人脸重建和特征加权方法进行戴眼镜人脸识别,正确率可以达到91%,优于传统方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号