共查询到20条相似文献,搜索用时 78 毫秒
1.
针对实际应用中局部遮挡会影响人脸表情识别,提出一种基于生成对抗网络(GAN)的表情识别算法。先对遮挡人脸图像填补修复,再进行表情识别。其中GAN的生成器由卷积自动编码机构成,与鉴别器的对抗学习使得生成的人脸图像更加逼真;由卷积神经网络构成的鉴别器具有良好的特征提取能力,添加多分类层构成了表情分类器,避免了重新计算图像特征。为了解决训练样本不足的问题,将CelebA人脸数据集用于训练人脸填补修复,同时表情分类器的特征提取部分得到了预训练。在CK+数据集上的实验证明,填补后的人脸图像真实连贯,并取得了较高的表情识别率,尤其提高了人脸大面积遮挡的识别率。 相似文献
2.
针对现实场景中遮挡人脸检测精度低的问题,提出了一种基于汇聚CNN和注意力增强网络的遮挡人脸检测方法.首先,在主网络的多层原始特征图上,通过有监督学习的方法增强原始特征图中人脸可见部分的响应值.然后,将多个增强特征图组合成附加增强网络与主网络汇聚设置,以加快对多尺度遮挡人脸的检测速度.最后,将有监督信息分散到各个尺寸的特... 相似文献
3.
针对实际应用中人脸图像存在局部遮挡的情况经常发生,会造成识别率下降和鲁棒性降低。因此针对目前存在的这种情况,提出一种基于改进生成式对抗网络(Generative Adversarial Network,GAN)的表情识别模型,先利用由自动编码器构成的生成器和两个鉴别器(局部鉴别器和全局鉴别器)的对抗学习对遮挡人脸图像填补修复,再在全局鉴别器后面添加多分类层,利用全局鉴别器的部分卷积层并在后面添加多分类层构成表情分类器进行表情识别。最后通过实验进行了不同遮挡面积的人脸图像在填补前后表情识别率的对比和不同算法的识别率对比,实验结果证明识别率会更高,尤其提高了人脸大面积遮挡的识别率。 相似文献
4.
5.
针对ATM机上违法犯罪分子通过遮挡面部进行犯罪活动进而无法追踪的问题,提出了一种基于YOLO与改进的DLIB多角度遮挡人脸判别方法。通过将基于YOLO模型的多目标检测改成单一人脸检测,并调整其损失函数中人脸置信度损失计算方式,提高了人脸定位的准确性与时效性,完成了从原始图像的输入到任意人脸位置的回归,再结合改进的DLIB多角度人脸68个关键点检测算法在回归出的人脸位置上进行遮挡判别的新方法。测试结果验证了新方法优于传统方法,能够有效并快速地判别出各类遮挡,实现了ATM机上遮挡人脸判别的实时性与鲁棒性,具有较高的应用价值。 相似文献
6.
有遮挡人脸图像还原是指通过对遮挡区域的图像进行估计,尽可能使用语义上合理的内容来填补.现有的人脸图像还原算法大多使用预先定义的掩模来模拟遮挡,并未考虑真实场景下的遮挡(如眼镜、口罩等)大小和位置对图像还原的影响.提出了一种基于深度卷积生成对抗网络的遮挡感知人脸还原方法,通过学习最接近遮挡图像的编码,来推断缺失的内容,并在生成的过程中自动检测出遮挡的区域,此外,为了减少面部信息丢失,保证恢复后的人脸的真实性,引入语义感知网络,以此进一步优化所提模型.对所选数据集的实验表明,所提出的模型效果较好. 相似文献
7.
8.
针对目前的遮挡人脸图像修复领域中遮挡部位与遮挡大小的限制或修复后人脸图像不够连贯等问题,提出一种改进的Wasserstein生成对抗网络(WGAN)方法来改善人脸图像的修复.将卷积神经网络作为生成器模型,并在对应层间加入跳跃连接来增强生成图像的准确性.在判别器中引入Wasserstein距离进行判别,并引入梯度惩罚来完... 相似文献
9.
为解决传统素描人脸合成方法中素描人脸图像细节模糊和清晰度低的问题,提出一种基于双层生成对抗网络的素描人脸合成方法。该方法学习面部照片与素描人脸图像之间的映射关系,并通过双层网络将映射关系限制为一对一映射;利用重建损失函数约束生成网络,提高合成能力;通过生成网络与判别网络的对抗训练,优化网络参数,合成最终素描人脸图像。通过在CUHK素描人脸库上的对比实验,证明该方法合成的素描人脸图像质量明显优于其他传统素描人脸合成方法,其合成的素描人脸图像面部细节更完整,清晰度更高。 相似文献
10.
近年来,随着人脸检测逐步面向现实场景应用,遮挡条件下的人脸检测成为计算机视觉领域研究的热门课题之一。遮挡所造成的特征损坏和噪声混叠,是人脸检测中亟待面对和解决的难点问题。综合分析了有遮挡人脸检测方法的研究进展,依据特征构造方法的不同将遮挡人脸检测分为基于手工设计特征的经典方法和基于深度学习的现代方法两大系列;对比分析了不同算法的基本原理,模型性能和存在的问题;探讨了未来可能的研究方向。 相似文献
11.
目前的多数活体检测算法忽略了特征挖掘,导致判别性信息提取不足。提出一种融合梯度纹理和群感受野的活体检测算法。使用中心差分卷积计算感受野周围点与中心点的差值,提取图像的梯度纹理特征,设计群感受野模块,采用不同尺寸的卷积核结合空洞卷积组成多分支结构,在使用较少参数量的情况下获得更大的感受野和多尺度特征,并将两种特征融合输入到残差结构中。此外,在使用深度图进行监督的同时,增加二值掩模进行辅助监督,使得网络将学习的中心放到人脸部位,进一步提升模型的鲁棒性。在此基础上,综合深度图生成器和掩模生成器的输出结果,计算预测得分,实现端到端的活体检测。实验结果表明,该算法在公开数据集OULU-NPU 4个协议上的平均分类错误率分别为0.9%、1.9%、1.6%±2.0%和2.7%±1.8%,在数据集CASIA-MFSD和Replay-Attack上可实现无误差活体检测,并且模型参数量仅为1.1 MB,与Auxiliary和STASN等活体检测算法相比,检测精度更高,具有更好的鲁棒性。 相似文献
12.
由于在现有的人体关键点检测问题中,深度学习解决方案采用的掩膜区域卷积神经网络Mask R-CNN存在参数量大导致计算成本过高、迭代次数多导致训练时间过长等问题,提出了一种基于重组通道网络ShuffleNet改进 Mask R-CNN网络模型。通过引入ShuffleNet的网络结构,使用分组逐点卷积与通道重排的操作与联合边框回归和掩膜分割的计算结果对Mask R-CNN进行轻量化改进。使用该方法改进网络模型在进行单人或多人情况下的人体关键点检测中,在保留精度的前提下,可以加快运行速度,减少检测时间。 相似文献
13.
针对复杂卷积神经网络(CNN)在中小型人脸数据库中的识别结果容易出现过拟合现象,提出一种基于改进CNN网络与集成学习的人脸识别算法。改进CNN网络结合平面网络和残差网络的特点,采用平均池化层代替全连接层,使得网络结构简单且可移植性强。在改进CNN网络的基础上,利用基于投票法的集成学习策略将所有个体学习器结果凸组合为最终结果,实现更准确的人脸识别。实验结果表明,该算法在Color FERET、AR和ORL人脸数据库上的识别准确率分别达到98.89%、99.67%和100%,并且具有较快的收敛速度。 相似文献
14.
15.
针对染色体图像的人工分割耗时费力且当前自动分割方法精度不佳的问题,基于改进的Mask R-CNN提出了一种染色体图像分割框架——Mask Oriented R-CNN,引入方向信息对染色体图像进行实例分割。首先,新增有向包围框回归分支,以预测紧实包围框并获取方向信息;然后,提出新的交并比(IoU)度量——角度加权交并比(AwIoU),从而结合方向信息与边的关系以改进冗余包围框的判据;最后,实现有向卷积通路结构,通过拷贝掩模分支通路并依据实例的方向信息选择训练路径来减少掩模预测中的干扰。实验结果表明,相较于基准模型Mask R-CNN,Mask Oriented R-CNN在IoU阈值为0.5时的平均精度均值指标提升了10.22个百分点,IoU阈值为0.5~0.95时的平均指标提升了4.91个百分点。研究结果显示,Mask Oriented R-CNN框架相较于基准模型取得了更好的染色体图像分割结果,有助于实现染色体图像自动分割。 相似文献
16.
车道线检测是无人驾驶任务中最重要的模块之一.由于车道线具有独特的结构,且容易受到各种各样复杂环境(比如光线、遮挡、模糊等)的影响,因此车道线检测也是一项很具有挑战性的任务.传统的卷积神经网络(CNN)难以直接学习到精细的车道线空间特征,本文使用空间特征聚合模块对CNN提取的特征在空间维度进行融合增强,为级联的车道线预测器提供了丰富的空间特征信息.实验证明,空间特征聚合模块通过聚合水平和垂直方向的特征图获取精细的全局信息,在多种复杂环境下都能提升车道线检测算法的性能,且不会影响检测的速度. 相似文献
17.
在基于神经网络的边缘检测模型中,大部分模型的检测效率不高,检测效果也有待提升.本文受人眼视觉系统特性的启发,提出了一种新的基于GPN (Gaussian Positive-Negative)径向基神经网络的边缘检测方法.首先,本文构造了一种新型的基于GPN径向基神经网络,将图像中经高斯滤波预处理后的每个像素点作为GPN径向基神经网络的中心点,并将其输入神经网络;然后,在每层之间使用卷积神经网络的部分特性进行处理,经过扩展层和隐层计算后输出结果;最后根据输出结果利用轮廓跟踪的方法将边缘提取出来.本文在检测效果以及效率这2个方面进行了相应的数值实验.针对合成图像以及部分灰度不均匀图像,相较于脉冲耦合神经网络模型、遗传神经网络模型以及卷积神经网络模型,本文模型在效率上得到了提升,且边缘的连通性更好.实验结果表明,本文提出的基于GPN径向基神经网络的边缘检测方法是一种新的、有效的边缘检测方法,比传统的神经网络边缘检测方法效率更高,且在检测效果上也有所提升. 相似文献
18.
针对直接利用多尺度融合特征图进行目标检测时鲁棒性较差的问题,提出一种对图像全局信息进行多维建模的检测方法。采用多阶段的特征复用和特征融合减少特征间相关性损失,设计广度通道建模分支(BCMB)与深度通道建模分支(DCMB)弥补因感受野变化造成的图像空间信息不足,并丰富图像中各个目标间的上下文信息。通过BCMB建立宽高方向的二维通道矩阵,对多层级的感受野进行建模,进而丰富模型对图像的空间感知,完成目标定位。使用DCMB建立深度方向的一维通道向量,提炼图像的全局特征,丰富模型对图像的上下文描述,完成目标分类。将2个分支生成的通道图与输入特征进行加权融合,增强图像通道表达力,使输出的特征对目标的位置和类别信息更敏感。在PASCAL VOC 2007测试数据集上的实验结果表明,该方法的mAP值为85.8%,与未使用通道建模的Baseline方法相比,最高可提升3.2个百分点。 相似文献
19.
为了进一步提高网络异常检测的准确率,本文在对现有入侵检测模型分析的基础上,提出了一种基于卷积神经网络和支持向量机的网络报文入侵检测方法.该方法首先将数据预处理成二维矩阵,为了防止算法模型过拟合,利用permutation函数将数据随机打乱,然后利用卷积神经网络CNN从预处理后的数据中学习有效特征,最后通过支持向量机SVM分类器将得到的向量进行分类处理.在数据集选择上,采用网络入侵检测常用的权威数据集—京都大学蜜罐系统数据集,通过与GRU-Softmax、GRU-SVM等现有检测率较高的模型进行实验对比,该模型在准确率上最高分别提高了19.39%和12.83%,进一步提升了网络异常检测的准确度.同时,本研究所提出方法在训练速度和测试速度上有较大提高. 相似文献
20.
针对复杂场景下行人检测效果差的问题,采用基于深度学习的目标检测中领先的研究成果,提出了一种基于改进Mask R-CNN框架的行人检测算法。首先,采用K-means算法对行人数据集的目标框进行聚类得到合适的长宽比,通过增加一组长宽比(2:5)使12种anchors适应图像中行人的尺寸;然后,结合细粒度图像识别技术,实现行人的高定位精度;其次,采用全卷积网络(FCN)分割前景对象,并进行像素预测获得行人的局部掩码(上半身、下半身),实现对行人的细粒度检测;最后,通过学习行人的局部特征获得行人的整体掩码。为了验证改进算法的有效性,将其与当前具有代表性的目标检测方法(如更快速的区域卷积神经网络(Faster R-CNN)、YOLOv2、R-FCN)在同数据集上进行对比。实验结果表明,改进的算法提高了行人检测的速度和精度,并且降低了误检率。 相似文献