共查询到16条相似文献,搜索用时 78 毫秒
1.
3D点云由于其无序性以及缺少拓扑信息使得点云的分类与分割仍具有挑战性.针对上述问题,我们设计了一种基于自注意力机制的3D点云分类算法,可学习点云的特征信息,用于目标分类与分割.首先,设计适用于点云的自注意力模块,用于点云的特征提取.通过构建领域图来加强输入嵌入,使用自注意力机制进行局部特征的提取与聚合.最后,通过多层感知机以及解码器-编码器的方式将局部特征进行结合,实现3D点云的分类与分割.该方法考虑了输入嵌入时单个点在点云中的局部语境信息,构建局部长距离下的网络结构,最终得到的结果更具区分度.在ShapeNetPart、RoofN3D等数据集上的实验证实所提方法的分类与分割性能较优. 相似文献
2.
为降低室外大规模点云场景中多类三维目标语义分割的计算复杂度,提出一种融合区块特征的语义分割方法。采用方形网格分割方法对三维点云进行区块划分、采样以及组合,求取简化的点云组合区块集,将其输入至区块特征提取和融合网络中从而获得每个区块的特征修正向量。设计点云区块全局特征修正网络,以残差的方式融合特征修正向量与原始点云全局特征,修正因分割造成的错误特征。在此基础上,将方形网格分割尺寸作为神经网络的参数引入反向传播过程中进行优化,从而建立高效的点云语义分割网络。实验结果表明,反向传播算法可以优化分割尺寸至最佳值附近,所提网络中的全局特征修正方法能够提高语义分割精度,该方法在Semantic3D数据集上的语义分割精度达到78.7%,较RandLA-Net方法提升1.3%,且在保证分割精度的前提下其点云预处理计算复杂度和网络计算时间明显降低,在处理点数为10万~100万的大规模点云时,点云语义分割速度较SPG、KPConv等方法提升2~4倍。 相似文献
3.
由于点云的非结构性和无序性, 目前已有的点云分类网络在精度上仍然需要进一步提高. 通过考虑局部结构的构建、全局特征聚合和损失函数改进三个方面, 构造一个有效的点云分类网络. 首先, 针对点云的非结构性, 通过学习中心点特征与近邻点特征之间的关系, 为不规则的近邻点分配不同的权重, 以此构建局部结构; 然后, 使用注意力思想, 提出加权平均池化(Weighted average pooling, WAP), 通过自注意力方式, 学习每个高维特征的注意力分数, 在应对点云无序性的同时, 可以有效地聚合冗余的高维特征; 最后, 利用交叉熵损失与中心损失之间的互补关系, 提出联合损失函数(Joint loss function, JL), 在增大类间距离的同时, 减小类内距离, 进一步提高了网络的分类能力. 在合成数据集ModelNet40、ShapeNetCore和真实世界数据集ScanObjectNN上进行实验, 与目前性能最好的多个网络相比较, 验证了该整体网络结构的优越性. 相似文献
4.
5.
点云分割是点云数据理解中的一个关键技术,但传统算法无法进行实时语义分割。近年来深度学习被应用在点云分割上并取得了重要进展。综述了近四年来基于深度学习的点云分割的最新工作,按基本思想分为基于视图和投影的方法、基于体素的方法、无序点云的方法、有序点云的方法以及无监督学习的方法,并简要评述;最后分析各类方法优劣并展望未来研究趋势。 相似文献
6.
当前针对点云模型的形状分类、部件分割等工作的深度学习网络缺乏从全局和局部两个角度综合利用上下文信息的能力,从而阻碍了点云对象在细节部分的准确度性能。因此,该文提出了一种通道注意力与局部区域注意力相结合的混合注意力机制,并基于动态图卷积构建了新的三维点云特征学习网络EDANet。通过通道注意力优化边卷积的处理过程,充分挖掘点云的局部特征信息,同时使用局部区域注意力从全局视角提取上下文特征,并将两部分信息相结合并逐层传递,从而提高特征提取效果网络的能力。在ModelNet40与ShareNet数据集上分别进行了点云形状分类、部件分割实验,实验结果表明在ModelNet40数据集上,EDANet网络的总体精度OA达到了92.9%,相较于PointNet、PointNet++、DGCNN分别高出了3.7%、2.3%、0.7%。在ShareNet数据集上平均并交比(mIoU)达到了86%,相较于PointNet、PointNet++、DGCNN分别高出了2.3%、0.9%、0.8%。相比其他深度学习网络也具有不同程度的性能提高。验证了该方法在点云处理任务中的优越性能。 相似文献
7.
深度学习作为点云分类的重要方法之一,通常会因为点云的稀疏性、无序性、有限性等特点,导致卷积算子不能充分提取局部空间相关性,直接使用卷积提取点的相关特征将导致特征信息的丢失。为此提出一种经过X变换后的点云分类卷积神经网络:XTNet(convolutional neural network based on X-transform)。XTNet对输入的原始点云数据进行X变换,将它们置换成潜在的规范顺序,抑制点云无序性、稀疏性对卷积操作的影响,避免卷积操作过程中的信息丢失;使用K近邻算法构建局部区域后,使用卷积层提取局部信息;在提取局部特征的同时通过通道扩充增加信息传递、丰富特征;在各局部特征提取模块间设置跳跃连接,进一步减少局部信息的丢失。在标准公开数据集ModelNet40和真实数据集ScanObjectNN中进行了实验。实验结果表明,与目前主流的多个高性能网络相比,XTNet分类准确率提高了0.3~4个百分点,并且拥有良好的鲁棒性和普适性。 相似文献
8.
为挖掘感知点云几何特征并通过特征增强的方式进一步提高点云语义分割效果,提出了一种基于特征增强的点云语义分割网络。首先,通过设计点云的几何特征感知(GFSOP)模块赋予网络点云局部几何结构的感知能力,捕获点间的空间特征以强化语义表征,并利用分层提取特征思想获得多尺度特征。同时,使用空间注意力和通道注意力融合预测点云语义标签,并通过强化空间关联性和通道依赖性提升分割性能。在室内数据集S3DIS(Stanford large-scale 3D Indoor Spaces)上的实验结果显示,所提网络相较于PointNet++在平均交并比(mIoU)上提升了5.7个百分点,在总体准确度(OA)上提升了3.1个百分点,且在存在噪声、点云密度不均和边界不清晰等问题的点云上表现出更强的泛化性能和更加鲁棒的分割效果。 相似文献
9.
10.
为提高室内场景的点云语义分割精度,设计了一个全融合点云语义分割网络。网络由特征编码模块、渐进式特征解码模块、多尺度特征解码模块、特征融合模块和语义分割头部组成。特征编码模块采用逆密度加权卷积作为特征编码器对点云数据进行逐级特征编码,提取点云数据的多尺度特征;然后通过渐进式特征解码器对高层语义特征进行逐层解码,得到点云的渐进式解码特征。同时,多尺度特征解码器对提取的点云多尺度特征分别进行特征解码,得到点云多尺度解码特征。最后将渐进式解码特征与多尺度解码特征融合,输入语义分割头部实现点云的语义分割。全融合网络增强了网络特征提取能力的鲁棒性,实验结果也验证了该网络的有效性。 相似文献
11.
基于深度学习的三维点云数据分析技术得到了越来越广泛的关注, 然而点云数据的不规则性使得高效提取点云中的局部结构信息仍然是一大研究难点. 本文提出了一种能够作用于局部空间邻域的卦限卷积神经网络(Octant convolutional neural network, Octant-CNN), 它由卦限卷积模块和下采样模块组成. 针对输入点云, 卦限卷积模块在每个点的近邻空间中定位8个卦限内的最近邻点, 接着通过多层卷积操作将8卦限中的几何特征抽象成语义特征, 并将低层几何特征与高层语义特征进行有效融合, 从而实现了利用卷积操作高效提取三维邻域内的局部结构信息; 下采样模块对原始点集进行分组及特征聚合, 从而提高特征的感受野范围, 并且降低网络的计算复杂度. Octant-CNN通过对卦限卷积模块和下采样模块的分层组合, 实现了对三维点云进行由底层到抽象、从局部到全局的特征表示. 实验结果表明, Octant-CNN在对象分类、部件分割、语义分割和目标检测四个场景中均取得了较好的性能. 相似文献
12.
在逆向工程中用神经网络实现点云数据分区 总被引:3,自引:0,他引:3
点云的数据分区问题是逆向工程中的一个瓶颈问题。论文在传统的自组织特征映射(SOFM)神经网络的基础上,用多层自组织特征映射(MLSOFM)神经网络实现逆向工程中点云的数据分区,克服了SOFM用于数据分区的局限性,不需预先指定分区的数目,实例运行结果验证了此方法的可行性。 相似文献
13.
14.
由于解决了三维点云的排列不变性问题,基于三维点云的深度学习方法在计算机三维视觉领域中取得了重大的突破,人们逐渐倾向于使用三维点云来描述物体并基于神经网络结构来提取点云的特征.然而,现有的方法依然无法解决旋转不变性问题,使得目前的模型鲁棒性较差;同时,神经网络结构的设计过于启发式,没有合理利用三维点云的几何结构与分布特性,导致网络结构的表达能力有待提升.鉴于此,提出了一种具有良好兼容性的严格旋转不变性表达以及深度层次类簇网络,试图从理论与实践两个层面解决上述问题.在点云识别、部件分割、语义分割这3个经典任务上进行了旋转鲁棒性对比实验,均取得了最优的效果. 相似文献
15.
点云数据被广泛用于多种三维场景,深度学习凭借提取特征自动化、泛化能力强等优势在三维点云的应用领域快速发展,逐渐成为点云分类的主流研究方法。根据提取方式的不同,将现有算法归纳为传统方法以及深度学习算法。着重介绍基于深度学习的代表性方法和最新研究,总结其基本思想以及优缺点,对比分析主要方法的实验结果;展望深度学习在点云分类领域的未来工作以及研究发展方向。 相似文献
16.
深度学习已成为点云分析的主要方法,但是现有方法在点云特征抽象时无法充分参考局部形状信息,因此对局部形状变化感知的鲁棒性较差,难以针对形状特征生成合适的卷积核。为此,提出了局部关系卷积(local relation convolution,LRConv),一种通过全面局部关系感知形状特征的卷积算子。参考点云局部中所有邻域点之间的低维空间关系,定义了一种不依赖于点的顺序与刚性变换的局部关系描述;使用多层感知机从关系描述中学习得到局部区域中每个点对应的卷积权重;通过卷积权重来变换点的特征,并聚合局部区域的抽象特征。在基准测试实验中,LRConv分类网络在ModelNet上的分类准确率较PointNet++提高了2.1个百分点,LRConv零件分割网络在ShapeNet上的分割类别平均重合度较PointNet++提高了1.5个百分点。实验结果充分验证了LRConv在特征抽象中的有效性。 相似文献