共查询到20条相似文献,搜索用时 42 毫秒
1.
本文主要从基本思想、算法步骤等方面对基于用户的协同过滤推荐算法和基于项目的协同过滤推荐算法进行了详细介绍,并对其存在的问题进行了总结。 相似文献
2.
电子商务推荐系统中的协同过滤推荐 总被引:9,自引:0,他引:9
电子商务推荐系统中协同过滤已成为目前应用最广泛、最成功的推荐方法。它利用相似用户购买行为也可能相似的特性进行推荐。介绍了与其他方法比较协同过滤方法的优点,然后说明了一些主要的协同过滤实现方法,指出了还需改进和完善的地方以及未来研究的方向。 相似文献
3.
电子商务推荐系统中的协同过滤推荐 总被引:11,自引:1,他引:11
电子商务推荐系统中协同过滤已成为目前应用最广泛、最成功的推荐方法。它利用相似用户购买行为也可能相似的特性进行推荐。介绍了与其他方法比较协同过滤方法的优点,然后说明了一些主要的协同过滤实现方法,指出了还需改进和完善的地方以及未来研究的方向。 相似文献
4.
5.
近几年提出了一些基于图卷积网络的协同过滤推荐模型,然而大部分模型将邻域权重视为常量且不区分用户和物品间的交互关系,无法获取令用户满意的推荐列表。因此,为了得到用户和物品更准确的嵌入表示,提出一种区分交互意图的图卷积协同过滤推荐算法MiGCCF(multi-intention graph convolutional collaborative filtering)。该算法将交互关系进行分解,细粒度分析用户与物品间的交互意图,并引入注意力机制,在消息传播过程中赋予邻域可学习的注意力权重,挖掘用户对于不同交互物品的喜爱度。在Gowalla与Amazon-book上的实验表明,该算法相比于基准算法,在两个数据集上的HR@50和NDCG@50指标分别提高了12.5%和8.5%,具有更好的性能表现。 相似文献
6.
介绍了协同过滤算法,并对算法进行了改进,解决了用户稀疏的情况下传统算法的不足,同时通过引入评分阈值,显著提高了个性化协同过滤算法的推荐精度。 相似文献
7.
现有的协同过滤推荐算法使用表示学习方法和匹配函数学习的方法来匹配用户喜欢的物品,但这不能充分表达用户对不同物品的真实偏好,且这些模型并不能有效捕获用户和物品交互时嵌入维度之间的相关性。为此,该文提出基于通道注意力的神经协同过滤模型NCFCA(Neural Collaborative Filtering based on Channel Attention)。首先,在网络中通过注意力机制对不同的物品分配不同的权重,来影响用户对物品的偏好程度;其次,模型利用卷积神经网络来提升用户和物品的关联性,并在卷积神经网络中加入通道注意力机制来挖掘丰富的语义信息;最后,利用广义矩阵分解方法来缓解因用户物品交互产生的数据稀疏问题并且将三个不同的模块(A-MLP、E-CNN、GMF)融合在一起。在MovieLens 1M和Lastfm数据集上的大量实验表明,NCFCA模型的准确率有不同程度的提高,表现出较为优越的推荐性能。 相似文献
8.
协同过滤推荐算法综述 总被引:36,自引:0,他引:36
推荐系统是电子商务系统最重要的技术之一,协同过滤推荐是目前应用最广泛和最成功的推荐系统.介绍协同过滤推荐算法的基本思想和最新研究进展,分析目前出现的代表性算法.总结协同过滤推荐算法中的关键问题和相关解决方案,比如相似性比较,数据稀疏性问题,推荐的实时性,推荐策略,评估方法等,同时也对比分析各种方法的优缺点.最后介绍协同过滤推荐算法需要进一步解决的问题和可能的发展方向. 相似文献
9.
为了了解基于用户和项目的两种协同过滤推荐算法的各自优势和适用场景,以及如何克服这两种算法当前存在的问题,本文对协同过滤推荐算法展开了研究.本文主要通过对比的方法,对基于用户和基于项目的协同过滤推荐算法进行研究.首先,介绍了两种协同过滤算法的基本原理.其次,阐述协同过滤推荐算法的相似度计算方法和评价指标.接着,分析了当前... 相似文献
10.
基于项目的协同过滤从用户的历史交互项目中学习用户偏好,根据用户的偏好推荐相似的新项目。现有的协同过滤方法认为用户所交互的一组历史项目对用户的影响是相同的,并且将所有历史交互项目在对目标项目作预测时的贡献看作是相同的,导致这些推荐方法的准确性受限。针对上述问题,提出了一种基于双重最相关注意力网络的协同过滤推荐算法,该算法包含两层注意力网络。首先,使用项目级注意力网络为不同历史项目分配不同的权重来捕获用户历史交互项目中最相关的项目;然后,使用项目交互级注意力网络感知不同历史项目与目标项目之间的交互关联度;最后,通过两层注意力网络的使用来同时捕获用户在历史交互项目上和目标项目上的细粒度偏好,从而更好地进行下一步推荐工作。在MovieLens和Pinterest两个真实数据集上进行实验,实验结果表明,所提算法在推荐命中率上与基准模型基于深度学习的项目协同过滤(DeepICF)算法相比分别提升了2.3个百分点和1.5个百分点,验证了该算法在为用户进行个性化推荐上的有效性。 相似文献
11.
协同过滤推荐瓶颈问题综述 总被引:1,自引:0,他引:1
个性化推荐使得用户从浩瀚信息检索查找中解放出来,成为一种继搜索引擎之后获取信息的重要方式.协同过滤因为其算法简单,能够处理复杂对象,并且推荐效果优异,成为个性化推荐中最成功和应用最广泛的技术.但随着推荐系统规模扩大,协同过滤受到了数据稀疏性、冷启动和可扩展性等瓶颈问题严重挑战.本文总结了传统协同过滤推荐技术流程,重点研究了解决协同过滤瓶颈问题的方案,分析了它们各自的优缺点,便于后续实现协同过滤推荐系统时方案的选择和使用. 相似文献
12.
一种改进的协同过滤推荐算法 总被引:6,自引:0,他引:6
传统的协同过滤算法在寻找最近邻居集合时没有考虑时间因素的影响,仅从用户或者项目单方面出发计算用户或者项目的相似性以产生推荐结果,也忽略了用户特征对推荐的影响.针对上述问题,引入时间遗忘函数、黏度函数、用户特征向量,对协同过滤算法寻找用户的最近邻居集合过程进行了改进,体现了时间效应、用户偏好程度和用户特征.采用MovieLens数据集进行了一系列对比实验,结果表明,改进后的算法能够明显提高推荐的准确度. 相似文献
13.
《软件》2017,(8):50-53
信息时代中,新形态的教育方式应运而生。越来越多的网络课程如同雨后春笋,以一种井喷式的态势增长着。但也存在一个无法忽视的痛点,不同的网课平台相互封锁,伴随之而来的矛盾是,用户需要花费更多的时间和精力到各个平台搜索心仪的网络课程。更有甚者,有部分用户由于自身水平限制,在入门一个领域时,常常由于缺乏对该领域的认识,在如何选择合适的网络课程时感到为难,这无疑是一块巨大的绊脚石。信息过载已成为制约人们方便使用互联网的绊脚石,网络世界信息资源分布广泛,使得人们产生信息迷失。推荐系统是信息过滤的衍生品,能更好地实现信息资源个性化推荐。从这个痛点出发,本文基于协同过滤算法,创新地提出一种网络课程推荐系统。并且,可从本文得到启发,并将此种方法应用于其他行业,诸如互娱、金融等。 相似文献
14.
针对协同过滤推荐算法在数据稀疏性及在大数据规模下系统可扩展性的两个问题, 在分析研究Hadoop分布式平台与协同过滤推荐算法后, 提出了一种基于Hadoop平台实现协同过滤推荐算法的优化方案. 实验证明, 在Hadoop平台上通过MapReduce结合Hbase数据库实现算法, 能够有效地提高协同过滤推荐算法在大数据规模下的执行效率, 从而能够进一步地搭建低成本高性能、动态扩展的分布式推荐引擎. 相似文献
15.
协同过滤推荐算法是电子商务推荐系统中应用最成功的推荐技术之一,而影响协同过滤推荐算法准确率的关键因素是用户相似性度量方法。针对传统相似性度量方法没有考虑共同评分项数量对推荐质量的影响,将用户之间的共同评分项数量作为相似性计算的一个重要指标,从而得到一种改进的相似性度量方法。但这仍然不能解决数据稀疏带来的推荐质量下降的问题,鉴于此,在上述改进的基础上,提出了利用复杂网络中的结构相似性来度量用户之间相似性的方法,使计算结果更具实际意义和准确性。实验表明,通过这些改进能够有效避免传统方法带来的弊端,提高系统的推荐质量。 相似文献
16.
不同地区的用户兴趣不同,并且当推荐物品具有位置属性时,用户更加倾向于离自身较近的物品。根据用户和物品的位置信息来捕获用户兴趣能有效地提高个性化推荐精度。为了有效处理用户和物品的位置信息,在推荐系统中引入金字塔模型(PS)来实现用户分区和用户旅行代价的计算,提出了基于金字塔模型的协同过滤算法(PMCF),来生成对用户的Top-N物品推荐。使用MovieLens数据集、Foursquare数据集和Synthetic数据集来分别评估算法的有效性,实验表明,所提出的算法的准确度要高于传统的推荐算法。 相似文献
17.
协同过滤技术被广泛应用于各种推荐系统当中.基于内存的协同过滤算法通过比较目标用户与其他用户的已有评分,为目标用户的未评分项目作出相应的预测.提出了一种新的基于内存的算法.根据项目的关键属性对它们进行分类,通过计算用户对各类项目的认知度,为目标用户选择相似用户并预测评分.通过MovieLens数据集的实验结果表明,该算法可以有效地解决包括数据稀疏性和新用户在内的一些协同过滤的基本问题,提供更高质量的推荐. 相似文献
18.
协同过滤是一种应用广泛的推荐算法,其核心过程是学习用户和商品的向量表示。基于图卷积网络(GCN)的协同过滤算法在向量嵌入过程中加入邻居节点的关联信息,进一步提升了算法的推荐性能。然而,图协同过滤算法中存在过平滑现象,且其仅采用邻接矩阵在局部结构中扩展,没有从图的整体结构出发挖掘节点间潜在的交互模式,使得交互信息来源单一。提出一种基于GCN的双通道协同过滤推荐算法DCCF。将向量嵌入过程划分为局部卷积通道和全局卷积通道,以获取不同类型的连接信息。在局部卷积通道中,直接定位邻域节点并使用单层网络结构完成计算,优化信息的聚合方式以应对过平滑问题。在全局卷积通道中,通过聚类的方式构造全局交互图并参与信息的聚合过程,从而挖掘节点间的潜在联系。将局部信息与全局信息相结合,以获得包含不同类型高阶关系的节点向量表示。在3个公开数据集上进行对比实验,结果表明,相较基准算法中性能表现最优的模型,DCCF在归一化折损累计增益和召回率这2个指标上最高分别提升2.8%和5.0%。 相似文献
19.
协同过滤算法作为一种成功的个性化推荐技术已经被应用到很多领域中,但随着系统规模的扩大,它的效率逐渐降低。针对它出现的缺点,提出一种新的基于内容和网络结构图的混合算法,实验数据证明该算法可以解决传统推荐算法中存在的一些缺陷。 相似文献
20.
针对传统协同过滤推荐技术应用于大规模动态数据集时难以兼顾准确度和效率的问题,提出一种基于上下文的分布式协同过滤推荐技术,引入推荐上下文的概念,并在此基础上充分考虑用户的即时兴趣以提高推荐的准确度,采用评分矩阵的分布式存储和计算以提高推荐的效率。实验结果表明,该分布式协同过滤技术能同时保证推荐的准确度和效率,使其在大规模动态数据集上的应用更具优势。 相似文献