首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 66 毫秒
1.
欧阳佳  印鉴  刘少鹏 《软件学报》2015,26(6):1457-1472
目前隐私保护的事务数据发布研究多是基于集中式结构.针对分布式结构下事务数据发布问题,为保护数据隐私,同时最大化数据效用,提出一种满足差分隐私约束的发布策略.首先,将结果效用性优化与差分隐私约束相结合,构建分布式非线性规划模型.然后,基于全局与局部数据设计两种解决方案安全求解该分布式模型.理论分析与实验结果均表明,所提出的发布策略是安全的且满足差分隐私要求,具有很好的实用性.  相似文献   

2.
差分隐私模型是一种强隐私模型,用隐私参数ε度量隐私保护程度及噪声量,近年来成为隐私保护领域的研究热点。但是隐私参数ε的设置只能依赖于实验或专业人士经验,限制了差分隐私模型的使用与推广。针对这个问题,基于(ρ1,ρ2)-隐私模型提出一种启发式的隐私参数ε设置策略(limit privacy breaches in differential privacy,LPBDP),分析隐私参数ε与(ρ1,ρ2)的内在联系,实现噪声量的添加由(ρ1,ρ2)决定。LPBDP通过如下启发式原则设置隐私参数ε:如果攻击者关于目标受害者的先验概率小于阈值ρ1,攻击者得到差分隐私查询策略返回的加噪结果后,关于目标受害者的后验概率必须小于阈值ρ2。实验表明LPBDP能够更直观地设置隐私参数ε以满足差分隐私约束。  相似文献   

3.
差分隐私K-means算法(Differential Privacy K-means Algorithm,DP K-means)作为一种基于差分隐私技术的隐私保护数据挖掘(Privacy Preserving Data Mining,PPDM)模型,因简单高效且可保障数据的隐私而备受研究者的关注。文中首先阐述了差分隐私K-means算法的原理、隐私攻击模型,以分析算法的不足。然后从数据预处理、隐私预算分配、聚簇划分等3个角度讨论分析DP K-means算法改进研究的优缺点,并对研究中的相关数据集和通用评价指标进行了总结。最后指出DP K-means算法改进研究中亟待解决的挑战性问题,并展望了DP K-means算法的未来发展趋势。  相似文献   

4.
在公开的社会网络数据模型研究中,随机图模型是当前流行的针对社会关系数据的统计和研究方法,其数据通常来源于公开的社会网络数据,而差分隐私技术的理论完备性正适合此类信息的收集、分析和发布。本文对差分隐私在图模型数据中的应用做了概述,提出了一种用于随机图模型数据中的差分隐私方法并讨论了其效能、应用场景以及当前的局限性,最后对差分隐私在该领域未来的探索方向做了简要的分析。  相似文献   

5.
近年来,隐私保护事务数据发布得到了研究者的广泛关注.事务数据的稀疏性导致个体隐私保护与数据效用性之间很难达到平衡.目前已有的方法大多是基于分组的匿名模型,但该类模型依赖于攻击者背景知识,且发布的数据无法满足事务数据分析任务的需要.针对事务数据隐私保护发布的数据安全性与效用性不足,基于差分隐私与压缩感知理论,提出一种有效的面向应用的事务数据发布策略(transaction data publish strategy, TDPS).首先构建事务数据库的完整Trie项集树,然后基于压缩感知技术对项集树添加满足差分隐私约束的噪音得到含噪Trie项集树,最后在含噪树上进行频繁项集挖掘任务.实验结果表明, TDPS不仅能很好地保护隐私,而且能有效保持数据效用性,满足事务数据分析任务对数据质量的要求.  相似文献   

6.
本地差分隐私具有不需要可信第三方、交互少、运行效率高等优点,近年来受到了广泛关注.然而,现有本地差分隐私集合数据频率估计机制未能考虑数据的隐私敏感度差异,将所有数据同等对待,这会对非敏感数据保护过强,导致估计结果准确度低.针对这一问题,定义了集合数据效用优化本地差分隐私(set-valued data utility-optimized local differential privacy, SULDP)模型,考虑了原始数据域同时包含敏感值和非敏感值的情况,在不减弱对敏感值保护的前提下,允许降低对非敏感值的保护.进一步,提出了符合SULDP模型的5种频率估计机制suGRR,suGRR-Sample,suRAP,suRAP-Sample和suWheel,理论分析证实,相对于现有的本地差分隐私机制,所提方案能够对敏感数据实现完全相同的保护效果,并通过降低非敏感数据的保护效果,实现了频率估计结果的准确度提升.最后,在真实和模拟数据集上评估了新的方案,实验结果证明了所提的5种机制能够有效降低估计误差,提升数据效用,其中suWheel机制表现最优.  相似文献   

7.
凌虎  肖广兵 《软件》2020,(11):153-156+204
本文试图将差分隐私模型应用于车辆时空轨迹数据集,提出一种分而治之的差分隐私处理方法。用评价平均密度的方法,将原车辆轨迹数据集分为路网与非路网车辆轨迹数据集,并且用时空聚合的方法进行车辆轨迹数据预处理。最后,分别用前缀树模型处理路网车辆轨迹数据集,用K-means聚类模型处理非路网车辆轨迹数据集。从而,达到发布净化数据集的目的。  相似文献   

8.
笔者介绍了差分隐私保护的研究背景、差分隐私保护的基本原理和方法,分析了k-means算法的隐私泄露问题。针对传统面向差分隐私保护k-means算法存在簇中心选取随机性导致聚类可用性较低的问题,提出一种指数加噪机制与密度估计相结合的方法,选取初始聚类中心,从而保证初始中心挑选的合理性,保障样本数据的隐私性。实验结果表明,提出的新方法可以显著提高聚类结果的可用性。  相似文献   

9.
《计算机工程》2017,(4):160-165
为在同等隐私保护强度下提高发布数据的分类准确率,在Diff Gen算法基础上提出一种改进的差分隐私数据发布算法Gini Diff。该算法将原始数据集完全泛化,在每轮迭代中通过指数机制选择特化方案,并以构建决策树的方式将特化后的记录划归到新的等价类,使用拉普拉斯机制为等价类计数添加噪声并生成发布数据集。运用基尼系数增益衡量不同特化方案的可用性,合理分配隐私预算并动态计算其消耗,发布数据集的可用性得到有效提高。实验结果表明,该算法发布的数据在分类准确率方面优于Diff Gen,接近理想水平。  相似文献   

10.
针对传统的图数据隐私保护方法只关注保护属性或结构两者之一易导致节点或边隐私信息泄露的问题,提出了一种对属性加权图的局部差分隐私的保护算法(AWG-LDP)。首先,该算法利用GN算法将图数据划分成社区子图;其次,分别计算每个社区子图的局部敏感度,对于划分后的每一个子图,通过结合结构相似性和属性相似性并添加拉普拉斯噪声进行边扰动,实现局部差分隐私;最后,利用属性泛化的方式将待发布的节点进行泛化,防止节点敏感信息被攻击。利用真实的图数据集进行了不同参数配置以及不同算法的对比实验,实验结果表明该算法提升了隐私保护效果,同时,降低了信息损失,提高了数据的可用性。  相似文献   

11.
宋健  许国艳  夭荣朋 《计算机应用》2016,36(10):2753-2757
在保护数据隐私的匿名技术中,为解决匿名安全性不足的问题,即匿名过程中因计算等价类质心遭受同质性和背景知识攻击造成的隐私泄漏,提出了一种基于差分隐私的数据匿名化隐私保护方法,构建了基于差分隐私的数据匿名化隐私保护模型;在利用微聚集MDAV算法划分相似等价类并在匿名属性过程中引入SuLQ框架设计得到ε-MDAV算法,同时选用Laplace实现机制合理控制隐私保护预算。通过对比不同隐私保护预算下可用性和安全性的变化,验证了该方法可以在保证数据高可用性的前提下有效地提升数据的安全性能。  相似文献   

12.
The increasing availability of high-dimensional data collected from numerous users has led to the need for multi-dimensional data publishing methods that protect individual privacy. In this paper, we investigate the use of local differential privacy for such purposes. Existing solutions calculate pairwise attribute marginals to construct probabilistic graphical models for generating attribute clusters. These models are then used to derive low-dimensional marginals of these clusters, allowing for an approximation of the distribution of the original dataset and the generation of synthetic datasets. Existing solutions have limitations in computing the marginals of pairwise attributes and multi-dimensional distribution on attribute clusters, as well as constructing relational dependency graphs that contain large clusters. To address these problems, we propose LoHDP, a high-dimensional data publishing method composed of adaptive marginal computing and an effective attribute clustering method. The adaptive local marginal calculates any k-dimensional marginals required in the algorithm. In particular, methods such as sampling-based randomized response are used instead of privacy budget splits to perturb user data. The attribute clustering method measures the correlation between pairwise attributes using an effective method, reduces the search space during the construction of the dependency graph using high-pass filtering technology, and realizes dimensionality reduction by combining sufficient triangulation operation. We demonstrate through extensive experiments on real datasets that our LoHDP method outperforms existing methods in terms of synthetic dataset quality.  相似文献   

13.
针对传统的聚类算法存在隐私泄露的风险,提出一种基于差分隐私保护的谱聚类算法。该算法基于差分隐私模型,利用累计分布函数生成满足拉普拉斯分布的随机噪声,将该噪声添加到经过谱聚类算法计算的样本相似度的函数中,干扰样本个体之间的权重值,实现样本个体间的信息隐藏以达到隐私保护的目的。通过UCI数据集上的仿真实验,表明该算法能够在一定的信息损失度范围内实现有效的数据聚类,也可以对聚类数据进行保护。  相似文献   

14.
朱骁  杨庚 《计算机应用研究》2022,39(1):236-239+248
为了让不同组织在保护本地敏感数据和降维后发布数据隐私的前提下,联合使用PCA进行降维和数据发布,提出横向联邦PCA差分隐私数据发布算法。引入随机种子联合协商方案,在各站点之间以较少通信代价生成相同随机噪声矩阵。提出本地噪声均分方案,将均分噪声加在本地协方差矩阵上。一方面,保护本地数据隐私;另一方面,减少了噪声添加量,并且达到与中心化差分隐私PCA算法相同的噪声水平。理论分析表明,该算法满足差分隐私,保证了本地数据和发布数据的隐私性,较同类算法噪声添加量降低。实验从隐私性和可用性角度评估该算法,证明该算法与同类算法相比具有更高的可用性。  相似文献   

15.
差分隐私保护是一种基于数据失真的隐私保护方法,通过添加随机噪声使敏感数据失真的同时也保证数据的统计特性。针对DBScan聚类算法在聚类分析过程中会泄露隐私的问题,提出一种新的基于差分隐私保护的DP-DBScan聚类算法。在满足ε-差分隐私保护的前提下,DP-DBScan聚类算法在基于密度的DBScan聚类算法上引入并实现了差分隐私保护。算法能够有效地保护个人隐私,适用于不同规模和不同维度的数据集。实验结果表明,与DBScan聚类算法相比,DP-DBScan聚类算法在添加少量随机噪声的情况下能保持聚类的有效性并获得差分隐私保护。  相似文献   

16.
唐海霞 《计算机应用研究》2020,37(7):1952-1957,1963
差分隐私直方图发布中,隐私预算涉及到噪声添加的强度,直接影响到直方图发布的数据可用性,如何合理地进行隐私预算的分配是直方图发布算法面临的一大挑战。提出了一种自适应的隐私预算分配策略的直方图发布算法APB(adaptive privacy budget allocation),首先通过分析分组前后引入的噪声误差和重构误差,建立了隐私预算分配权重的优化模型,得到最优分配权重和分组大小以及分组个数之间关系;然后基于优化模型和贪心分组的思想,提出了自适应的隐私预算分配策略,可以更好地均衡噪声误差和重构误差,提高发布数据的可用性。实验结果表明,基于自适应的隐私预算分配策略的直方图发布算法可用性高于同类算法。  相似文献   

17.
隐私保护问题已成为信息安全领域研究的重点方向。差分隐私从2006年提出至今一直受到理论界的推崇,而近年来在产业界众包模式下的本地差分隐私受到了极大关注。分析了本地差分隐私模型相对于经典差分隐私模型的演进与应用场景,从理论研究和工程实践角度,对本地差分隐私基础理论及其在数据收集与数据分析中的应用研究进行综述。在数据收集方面,介绍了本地差分隐私的主要研究和应用成果,并着重从差分隐私的角度对这些方法进行了分析比较。在数据分析方面,阐述了本地差分隐私在编码、解码以及在统计学角度的实现和分析方式,并从理论上对这些算法进行推导分析。最后,在对已有技术深入对比分析的基础上,总结出了本地差分隐私技术面临的挑战和研究方向。  相似文献   

18.
随着医学技术的进步和大数据时代的到来,在数据发布时如何对患者就诊记录中的敏感信息进行隐私保护成为当前的研究热点。针对医疗大数据在发布过程中隐私保护问题,提出了基于属性效用值排序法AUR-Tree(attribute utility value ranking-tree)差分隐私数据发布算法。该算法用属性效用值排序法衡量准标识属性对敏感属性的影响程度,以此作为迭代分割的度量依据,采用基于泛化的自顶向下迭代分割分类树技术,通过类等差法合理的分配隐私预算从而实现在医疗数据发布过程中的隐私保护。实验结果表明:该算法在极大地提高了数据的安全性、有效性和可用性的前提下,还保留了后续数据挖掘的价值。  相似文献   

19.
为加强隐私保护和提高数据可用性,提出一种可对混合属性数据表执行差分隐私的数据保护方法。该方法首先采用ICMD(insensitive clustering for mixed data)聚类算法对数据集进行聚类匿名,然后在此基础上进行-差分隐私保护。ICMD聚类算法对数据表中的分类属性和数值属性采用不同方法计算距离和质心,并引入全序函数以满足执行差分隐私的要求。通过聚类,实现了将查询敏感度由单条数据向组数据的分化,降低了信息损失和信息披露的风险。最后实验结果表明了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号