首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
田青  孙灿宇  储奕 《软件学报》2024,35(4):1703-1716
作为机器学习的一个新兴领域,多源部分域适应(MSPDA)问题由于其源域自身的复杂性、领域之间的差异性以及目标域自身的无监督性,给相关研究带来了挑战,以致目前鲜有相关工作被提出.在该场景下,多个源域中的无关类样本在域适应过程中会造成较大的累积误差和负迁移.此外,现有多源域适应方法大多未考虑不同源域对目标域任务的贡献度不同.因此,提出基于自适应权重的多源部分域适应方法(AW-MSPDA).首先,构建了多样性特征提取器以有效利用源域的先验知识;同时,设计了多层次分布对齐策略从不同层面消除了分布差异,促进了正迁移;此外,为量化不同源域贡献度以及过滤源域无关类样本,利用相似性度量以及伪标签加权方式构建自适应权重;最后,通过大量实验验证了所提出AW-MSPDA算法的泛化性以及优越性.  相似文献   

2.
无监督域适应(Unsupervised domain adaptation,UDA)方法通过全局特征分布匹配实现源域到目标域的知识迁移,但忽略了细粒度的局部实例信息。本文提出了一种基于双层域自适应(Two-tiered domain adaptation,TTDA)的无监督行人重识别方法,使用全尺寸网络(Omni-scale network,OSNet)作为骨干网络,在端到端深度学习框架中联合执行源域和目标域之间的全局特征分布匹配和局部实例匹配,从源域和目标域之间不同行人ID的关联中挖掘可迁移的有用知识,并通过知识选择机制提高了跨域适应性。在多个大型公开数据集上的实验结果表明,与其他先进方法相比,所提方法在源域到目标域的无监督行人重识别的平均精度均值(mean Average precision,mAP)和top-k命中率均取得显著提升。  相似文献   

3.
无监督域适应(unsupervised domain adaptation,UDA)针对的是源域有标记而目标域无标记的学习问题,其目的是利用从标记大样本源域中所学"知识"来促进无标记小样本目标域的学习性能。但现实中也往往存在样本无标记的源域,形成了所谓的完全无监督域适应。该问题给域适应学习带来了严峻的挑战。受先前提出的软大间隔聚类学习(soft large margin clustering,SLMC)启发,提出了一种参数迁移方法——参数字典稀疏表示的完全无监督的域适应方法(whole UDA,WUDA)。SLMC采用分类学习思想在输出(标记)空间中实现给定数据的聚类,在这种实现原理的启发下,从参数(决策函数的权重矩阵)公共字典的角度,在源域和目标域的权重间进行互适应参数字典学习实现知识迁移,同时引入l_(2,1)范数来约束字典系数矩阵,使得各域权重可从公共字典中自适应地选择,从而实现域适应学习。最后,在相关数据集上的实验显示了WUDA在聚类性能上的显著有效性。  相似文献   

4.
戴宏  郝轩廷 《计算机学报》2022,45(5):935-950
近年来,人工智能的相关应用被越来越细化到不同的应用场景,而对不同的应用场景都进行相应的数据收集,模型训练,模型调优等步骤需要消耗大量的时间精力会严重影响人工智能技术应用的效率.因此如何基于现有的成熟的训练过的模型迁移到其他应用场景是当前应用人工智能技术的关键问题.域适应算法主要研究将源域模型有效地迁移到目标域,这为上述问题提供了一个重要的解决思路.本文提出小样本对抗判别域适应算法,相对于无监督域适应算法能够在更严格的约束下-仅需要少量的目标域样本,在标准数据集上取得了优于对抗判别域适应算法(Adversarial Discriminative Domain Adaptation,ADDA)算法的表现,在单任务中最高提升幅度达16.9%.本文中,首先,提出了两种新的数据增强方法,以构建符合双域联合分布的图像以丰富样本多样性并填充特征空间,解决小样本约束下模型易过拟合到少量目标域样本的问题.接着,结合双域样本配对机制和ADDA算法,将以大量目标域样本为条件的无监督域适应算法改进为面向小样本约束的有监督域适应算法.在域适应过程中,引入类标签平滑损失来抑制过拟合现象,并结合度量学习中的最大平均...  相似文献   

5.
汪云云  孙顾威  赵国祥  薛晖 《软件学报》2022,33(4):1170-1182
无监督域适应(unsupervised domain adaptation,UDA)旨在利用带大量标注数据的源域帮助无任何标注信息的目标域学习.在UDA中,通常假设源域和目标域间的数据分布不同,但共享相同的类标签空间.但在真实开放学习场景中,域间的标签空间很可能存在差异.在极端情形下,域间的类别不存在交集,即目标域中类...  相似文献   

6.
在无监督领域自适应中分类器对目标域的样本进行类别预测时容易产生混淆预测,虽然已有研究提出了相关算法提取到样本的类间相关性,降低了分类器在目标域上的类混淆预测。但该方法仍然未能解决源域和目标域因共享特征稀疏导致的迁移学习能力不足的问题,针对这个问题,通过使用生成对抗网络对源域进行了风格迁移,扩展源域各类样本的特征空间可供目标域匹配的共享特征,解决因共享特征稀疏导致分类器正迁移力不足的问题,从而进一步减少分类器在目标域上产生的类混淆预测。当分类器利用扩充后的共享特征对目标域样本预测分类概率时,基于不确定性权重机制,加重预测概率权重使其能在几个预测概率峰值上以更高的概率值突出,准确地量化类混淆,最小化跨域的类混淆预测,抑制跨域的负迁移。在UDA场景下,对标准的数据集ImageCLEF-DA和Office-31的三个子数据集分别进行了领域自适应实验,相较于RADA算法平均识别精度分别提升了1.3个百分点和1.7个百分点。  相似文献   

7.
深度决策树迁移学习Boosting方法(DTrBoost)可以有效地实现单源域有监督情况下向一个目标域迁移学习,但无法实现多个源域情况下的无监督迁移场景。针对这一问题,提出了多源域分布下优化权重的无监督迁移学习Boosting方法,主要思想是根据不同源域与目标域分布情况计算出对应的KL值,通过比较选择合适数量的不同源域样本训练分类器并对目标域样本打上伪标签。最后,依照各个不同源域的KL距离分配不同的学习权重,将带标签的各个源域样本与带伪标签的目标域进行集成训练得到最终结果。对比实验表明,提出的算法实现了更好的分类精度并对不同的数据集实现了自适应效果,分类错误率平均下降2.4%,在效果最好的marketing数据集上下降6%以上。  相似文献   

8.
为实现目标域样本能够与源域中同类样本准确对齐,并在保证样本准确识别率的条件下进一步提高不同类别样本特征间的可区分性,提出了一种带有类间差异约束的域适应模型。首先,该模型采用深度卷积神经网络对源域样本进行了有监督学习,并在训练过程中基于提出的类间差异测量函数对源域样本特征加以类间差异性约束;其次,该模型采用了多对抗域鉴别网络结构,其中提出了一种目标域样本伪标签计算方法,从而将无标签的样本指定到合理的域鉴别网络进行训练;最后,通过最小化分类损失与最大化域鉴别损失,获得最优特征提取器与特征分类器。实验结果表明,对于4种数据集,提出的模型在目标域上平均识别准确率可以达到0.860,同类间的平均距离、不同类间的平均距离、目标域中样本错误识别率相对于改进前分别降低0.003,提升0.065,降低0.025,从而验证了提出模型的性能得到了明显提升。  相似文献   

9.
深度学习在图像分类上的准确度很大程度上依赖于大量的标记数据,无监督域适应已经被证明是一种有效的方法去解决一个新的无标签域上的任务,其主要思想是利用有标签的数据集作为源域,通过减少源域和目标域之间的差异,将源域训练的预测模型应用于目标域.本文提出了聚类中心对齐的无监督域适应方法CADA,将语义对齐方法与传统对抗域适应相结...  相似文献   

10.
针对蓄意攻击样本有限不均衡而引起无法有效识别关键危险源少数类样本的问题,提出多分类器集成加权均衡分布适配的关键危险源识别方法.首先,在保证少数类样本被充分选择的前提下随机抽取多数类样本,构成源域多样本训练集合,在目标域上直接预测伪标签并给样本赋予不同的权重,让少数类样本可以得到充分的训练;然后,训练源域样本集的分类器,...  相似文献   

11.
Unsupervised domain adaptation (UDA) has achieved great success in handling cross-domain machine learning applications.It typically benefits the model training of unlabeled target domain by leveraging knowledge from labeled source domain.For this purpose,the minimization of the marginal distribution divergence and conditional distribution divergence between the source and the target domain is widely adopted in existing work.Nevertheless,for the sake of privacy preservation,the source domain is usually not provided with training data but trained predictor (e.g.,classifier).This incurs the above studies infeasible because the marginal and conditional distributions of the source domain are incalculable.To this end,this article proposes a source-free UDA which jointly models domain adaptation and sample transport learning,namely Sample Transport Domain Adaptation (STDA).Specifically,STDA constructs the pseudo source domain according to the aggregated decision boundaries of multiple source classifiers made on the target domain.Then,it refines the pseudo source domain by augmenting it through transporting those target samples with high confidence,and consequently generates labels for the target domain.We train the STDA model by performing domain adaptation with sample transport between the above steps in alternating manner,and eventually achieve knowledge adaptation to the target domain and attain confident labels for it.Finally,evaluation results have validated effectiveness and superiority of the proposed method.  相似文献   

12.
Unsupervised domain adaptation (UDA), which aims to use knowledge from a label-rich source domain to help learn unlabeled target domain, has recently attracted much attention. UDA methods mainly concentrate on source classification and distribution alignment between domains to expect the correct target prediction. While in this paper, we attempt to learn the target prediction end to end directly, and develop a Self-corrected unsupervised domain adaptation (SCUDA) method with probabilistic label correction. SCUDA adopts a probabilistic label corrector to learn and correct the target labels directly. Specifically, besides model parameters, those target pseudo-labels are also updated in learning and corrected by the anchor-variable, which preserves the class candidates for samples. Experiments on real datasets show the competitiveness of SCUDA.  相似文献   

13.
标准域无监督域适应学习是从相关的源域学习知识迁移到目标域,通常假设源域数据在训练阶段是可直接使用的。但是由于隐私和安全问题,在一些现实的应用中,源域数据往往是不可直接获取的,如何有效利用目标域数据从而减少噪声类的输出或特征的产生是源域无关域适应学习的巨大挑战。为解决这个问题,提出了一个基于双矫正机制的源域无关域适应学习模型(source-free domain adaptation with dual-correction mechanism,DCM)。首先,探索目标域样本信息结构,对噪声类输出进行矫正;其次,采用教师—学生模型指导特征的学习,最大化高置信度特征间的一致性以及低置信度特征间的差异性。最后,在数字集、Office-31和Office-Home数据集上的实验结果证实了DCM的有效性。  相似文献   

14.
15.
王帆  韩忠义  尹义龙 《软件学报》2022,33(4):1183-1199
无监督域自适应是解决训练集(源域)和测试集(目标域)分布不一致的有效途径之一.现有的无监督域自适应的理论和方法在相对封闭、静态的环境下取得了一定成功,但面向开放动态任务环境时,在隐私保护、数据孤岛等限制条件下,源域数据往往不可直接获取,现有无监督域自适应方法的鲁棒性将面临严峻的挑战.鉴于此,研究了一个更具挑战性却又未被...  相似文献   

16.
Unsupervised Domain Adaptation (UDA) aims to use the source domain with large amounts of labeled data to help the learning of the target domain without any label information. In UDA, the source and target domains are usually assumed to have different data distributions but share the same class label space. Nevertheless, in real-world open learning scenarios, label spaces are highly likely to be different across domains. In extreme cases, the domains share no common classes, i.e., all classes in the target domain are new classes. In such a case, direct transferring the class-discriminative knowledge from the source domain may impair the performance in the target domain and lead to negative transfer. For this reason, this paper proposes unsupervised new-set domain adaptation with self-supervised knowledge (SUNDA) to transfer the sample contrastive knowledge from the source domain, and use self-supervised knowledge from the target domain to guide the knowledge transfer. Specifically, the initial features of the source and target domains are learned by self-supervised learning, and some network parameters are frozen to preserve target domain information. Sample contrastive knowledge from the source domain is then transferred to the target domain to assist the learning of class-discriminative features in the target domain. Moreover, graph-based self-supervised classification loss is adopted to handle the problem of target domain classification with no inter-domain common classes. SUNDA is evaluated on tasks of cross-domain transfer for handwritten digits without any common class and cross-race transfer for face data without any common class. The experiments show that SUNDA outperforms UDA, unsupervised clustering, and new class discovery methods in learning performance.  相似文献   

17.
现有基于深度学习的轴承故障诊断方法对数据具有一定的依赖性,要求训练数据与测试数据具有相同的分布。在变工况的条件下,网络模型的故障诊断精度会因数据分布发生变化而下降。为保证网络模型能够在变工况条件下对轴承的健康状态进行准确识别,基于无监督域自适应理论,提出一种新颖的智能故障诊断网络模型——动态卷积多层域自适应网络。该网络一方面充分利用动态卷积强有力的特征提取能力,提取更多有效的故障特征;另一方面采用相关对齐实施非线性变换,同时对齐多层故障特征分布的二阶统计量,促进源域的诊断知识向目标域迁移,提高了模型在目标域无故障标签条件下的故障识别准确率。最后,在两个数据集共14个迁移任务下进行实验,实验结果表明,动态卷积多层域自适应网络能够实现较高的故障诊断识别精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号