首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
章曼  张正军  冯俊淇  严涛 《计算机应用》2022,42(6):1914-1921
针对基于快速搜索和发现密度峰值的聚类(CFSFDP)算法中截断距离需要人工选取,以及最近邻分配带来的误差导致的在具有不同密度簇的复杂数据集上的聚类效果不佳的问题,提出了一种基于自适应可达距离的密度峰值聚类(ARD-DPC)算法。该算法利用非参数核密度估计方法计算点的局部密度,根据决策图选取聚类中心,并利用自适应可达距离分配数据点,从而得到最终的聚类结果。在4个合成数据集和6个UCI数据集上进行了仿真实验,将所提算法ARD-DPC与基于快速搜索和发现密度峰值的聚类(CFSFDP)、基于密度的噪声应用空间聚类(DBSCAN)、基于密度自适应距离的密度峰聚类(DADPC)算法进行了比较,实验结果表明,相比其他三种算法,ARD-DPC算法在7个数据集上的标准化互信息(NMI)、兰德指数(RI)和F1-measure取得了最大值,在2个数据集分别取得F1-measure和NMI的最大值,只对模糊度较高、聚类特征不明显的Pima数据集聚类效果不佳;同时,ARD-DPC算法在合成数据集上能准确地识别出聚类数目和具有复杂密度的簇。  相似文献   

2.
针对传统K-means聚类算法对初始聚类中心和离群孤立点敏感的缺陷,以及现有引入密度概念优化的K-means算法均需要设置密度参数或阈值的缺点,提出一种融合最近邻矩阵与局部密度的自适应K-means聚类算法。受最邻近吸收原则与密度峰值原则启发,通过引入数据对象间的距离差异值构造邻近矩阵,根据邻近矩阵计算局部密度,不需要任何参数设置,采取最近邻矩阵与局部密度融合策略,自适应确定初始聚类中心数目和位置,同时完成非中心点的初分配。人工数据集和UCI数据集的实验测试,以及与传统K-means算法、基于离群点改进的K-means算法、基于密度改进的K-means算法的实验比较表明,提出的自适应K-means算法对人工数据集的孤立点免疫度较高,对UCI数据集具有更准确的聚类结果。  相似文献   

3.
针对快速K-medoids聚类算法和方差优化初始中心的K-medoids聚类算法存在需要人为给定类簇数,初始聚类中心可能位于同一类簇,或无法完全确定数据集初始类簇中心等缺陷,受密度峰值聚类算法启发,提出了两种自适应确定类簇数的K-medoids算法。算法采用样本x i的t最近邻距离之和倒数度量其局部密度ρi,并定义样本x i的新距离δi,构造样本距离相对于样本密度的决策图。局部密度较高且相距较远的样本位于决策图的右上角区域,且远离数据集的大部分样本。选择这些样本作为初始聚类中心,使得初始聚类中心位于不同类簇,并自动得到数据集类簇数。为进一步优化聚类结果,提出采用类内距离与类间距离之比作为聚类准则函数。在UCI数据集和人工模拟数据集上进行了实验测试,并对初始聚类中心、迭代次数、聚类时间、Rand指数、Jaccard系数、Adjusted Rand index和聚类准确率等经典聚类有效性评价指标进行了比较,结果表明提出的K-medoids算法能有效识别数据集的真实类簇数和合理初始类簇中心,减少聚类迭代次数,缩短聚类时间,提高聚类准确率,并对噪音数据具有很好的鲁棒性。  相似文献   

4.
基于快速搜索和寻找密度峰值聚类算法(DPC)具有无需迭代且需要较少参数的优点,但其仍然存在一些缺点:需要人为选取截断距离参数;在流形数据集上的处理效果不佳。针对这些问题,提出一种密度峰值聚类改进算法。该算法结合了自然和共享最近邻算法,重新定义了截断距离和局部密度的计算方法,并且算法融合了候选聚类中心计算概念,通过算法选出不同的候选聚类中心,然后以这些候选中心为新的数据集,再次开始密度峰值聚类,最后将剩余的点分配到所对应的候选中心点所在类簇中。改进的算法在合成数据集和UCI数据集上进行验证,并与K-means、DBSCAN和DPC算法进行比较。实验结果表明,提出的算法在性能方面有明显提升。  相似文献   

5.
密度峰值聚类算法的局部密度定义未考虑密度分布不均数据类簇间的样本密度差异影响, 易导致误选类簇中心; 其分配策略依据欧氏距离通过密度峰值进行链式分配, 而流形数据通常有较多样本距离其密度峰值较远, 导致大量本应属于同一个类簇的样本被错误分配给其他类簇, 致使聚类精度不高. 鉴于此, 本文提出了一种K近邻和加权相似性的密度峰值聚类算法. 该算法基于样本的K近邻信息重新定义了样本局部密度, 此定义方式可以调节样本局部密度的大小, 能够准确找到密度峰值; 采用样本的共享最近邻及自然最近邻信息定义样本间的相似性, 摒弃了欧氏距离对分配策略的影响, 避免了样本分配策略产生的错误连带效应. 流形及密度分布不均数据集上的对比实验表明, 本文算法能准确找到疏密程度相差较大数据集的密度峰值, 避免了流形数据的分配错误连带效应, 得到了满意的聚类效果; 同时在真实数据集上的聚类效果也十分优秀.  相似文献   

6.
密度峰值聚类算法(Density Peaks Clustering,DPC),是一种基于密度的聚类算法,该算法具有不需要指定聚类参数,能够发现非球状簇等优点。针对密度峰值算法凭借经验计算截断距离[dc]无法有效应对各个场景并且密度峰值算法人工选取聚类中心的方式难以准确获取实际聚类中心的缺陷,提出了一种基于基尼指数的自适应截断距离和自动获取聚类中心的方法,可以有效解决传统的DPC算法无法处理复杂数据集的缺点。该算法首先通过基尼指数自适应截断距离[dc],然后计算各点的簇中心权值,再用斜率的变化找出临界点,这一策略有效避免了通过决策图人工选取聚类中心所带来的误差。实验表明,新算法不仅能够自动确定聚类中心,而且比原算法准确率更高。  相似文献   

7.
密度峰值聚类(DPC)是近年来提出的一种新的密度聚类算法,算法的核心是基于局部密度和相对距离,通过画出决策图,人为选定聚类中心,进而完成聚类.DPC算法利用截断距离计算局部密度,本质上只考虑了周围近邻节点的数量,且算法采用单步分配策略,一定程度上限制了算法对任意数据集的计算精度和有效性.针对上述问题,提出基于二阶k近邻的密度峰值聚类算法(SODPC).算法通过引入节点的二阶k近邻,计算直接密度和间接密度,重新定义局部密度的计算方式.在此基础上,定义非中心节点的多步骤分配策略完成聚类.通过人工和真实数据的测试,证明了该算法对不规则、密度不均匀的数据集具有较好的聚类效果.  相似文献   

8.
密度峰值聚类算法是一种新颖的密度聚类算法,但是原算法仅仅考虑了数据的全局结构,在对分布不均匀的数据集进行聚类时效果不理想,并且原算法仅仅依据决策图上各点的分布情况来选取聚类中心,缺乏可靠的选取标准。针对上述问题,提出了一种基于加权K近邻的改进密度峰值聚类算法,将最近邻算法的思想引入密度峰值聚类算法,重新定义并计算了各数据点的局部密度,并通过权值斜率变化趋势来判别聚类中心临界点。通过在人工数据集上与UCI真实数据集上的实验,将该改进算法与原密度峰值聚类、K-means及DBSCAN算法进行了对比,证明了改进算法能够在密度不均匀数据集上有效完成聚类,能够发现任意形状簇,且在三个聚类性能指标上普遍高于另外三种算法。  相似文献   

9.
针对密度峰值聚类算法受人为干预影响较大和参数敏感的问题,即不正确的截断距离dc会导致错误的初始聚类中心,而且在某些情况下,即使设置了适当的dc值,仍然难以从决策图中人为选择初始聚类中心。为克服这些缺陷,提出一种新的基于密度峰值的聚类算法。该算法首先根据K近邻的思想来确定数据点的局部密度,然后提出一种新的自适应聚合策略,即首先通过算法给出阈值判断初始类簇中心,然后依据离初始类簇中心最近分配剩余点,最后通过类簇间密度可达来合并相似类簇。在实验中,该算法在合成和实际数据集中的表现比DPC、DBSCAN、KNNDPC和K-means算法要好,能有效提高聚类准确率和质量。  相似文献   

10.
在谱聚类算法没有先验信息的情况下,对于具有复杂形状和不同密度变化的数据集很难构建合适的相似图,且基于欧氏距离的高斯核函数的相似性度量忽略了全局一致性。针对该问题,提出一种基于共享最近邻的密度自适应邻域谱聚类算法(SC-DANSN)。通过一种无参数的密度自适应邻域构建方法构建无向图,将共享最近邻作为衡量样本之间的相似性度量进而消除参数对构建相似图的影响,体现全局和局部的一致性。实验结果表明,SC-DANSN算法相比K-means算法和基于K最近邻的谱聚类算法(SC-KNN)具有更高的聚类精度,同时相比SC-KNN算法对参数的选取敏感性更低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号